Gravitino Dark Matter and Collider Implications

Frank Daniel Steffen

MORIOND 2008 La Thuile, Italy March 3rd, 2008

Evidence for Dark Matter in the Universe

Evidence for Dark Matter in the Universe

1000

ΟĒ

10

100

- $\hfill\square$ Spiral Galaxies
 - * Rotation Curves
- \Box (Super-) Clusters of Galaxies
 - * Galaxy Velocities \leftrightarrow X-Rays
 - * Weak Gravitational Lensing
 - * Strong Gravitational Lensing
- \Box Large Scale Structure
 - * Structure Formation
- \square CMB Anisotropy: WMAP, ...
 - * $\Omega_{\rm tot} = 100\%$
 - * $\Omega_{\rm M} = 27\%$
 - * $\Omega_{\rm B} = 5\%$

500

Multipole moment *l*

1000

1500

What is

the identity of Dark Matter ?

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

Gravitino Dark Matter and Collider Implications

Properties of Dark Matter

- $\tau_{\rm DM} \gtrsim$ age of our Universe
- clusters \leftarrow gravitation
- slow "cold"
- electrically neutral
- color neutral

Dark Matter

Physics beyond the Standard Model

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

The Minimal Supersymmetric Standard Model

GAUGE	Gauge bosons	Gauginos	$\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}} ight)_{Y}$
B-boson, bino	$A^{(1)}_{\mu} = B_{\mu}$	$\lambda^{(1)} = \widetilde{B}$	$({f 1} , {f 1})_0$
W-bosons, winos	$A^{(2)a}_{\mu} = W^a_{\mu}$	$\lambda^{(2)a} = \widetilde{W}^a$	$({f 1},{f 3})_0$
gluon, gluino	$A_{\mu}^{(3)a} = G_{\mu}^{a}$	$\lambda^{(3)a} = \widetilde{g}^a$	$({f 8},{f 1})_0$
MATTER	Sfermions	Fermions	$\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$

		`	
sleptons, leptons $I = 1, 2, 3$	$\widetilde{L}^{I} = \begin{pmatrix} \widetilde{\nu}_{L}^{I} \\ \widetilde{e}_{L}^{-I} \end{pmatrix}$	$L^{I} = \begin{pmatrix} \nu_{L}^{I} \\ e_{L}^{-I} \end{pmatrix}$	$({f 1}, {f 2})_{-1}$
	$\widetilde{E}^{*I} = \widetilde{e}_R^{-*I}$	$E^{c I} = e_R^{-c I}$	$({f 1} , {f 1})_{+2}$
squarks, quarks $I = 1, 2, 3$	$\widetilde{Q}^{I} = \begin{pmatrix} \widetilde{u}_{L}^{I} \\ \widetilde{d}_{L}^{I} \end{pmatrix}$	$Q^I = egin{pmatrix} u^I_L \ d^I_L \end{pmatrix}$	$({f 3},{f 2})_{+{1\over 3}}$
$(\times 3 \text{ colors})$	$\widetilde{U}^{*I} = \widetilde{u}_R^{*I}$	$U^{cI} = u_R^{cI}$	$(\overline{f 3}, {f 1})_{-rac{4}{3}}$
	$\widetilde{D}^{*I} = \widetilde{d}_R^{*I}$	$D^{c I} = d_R^{c I}$	$(\overline{3},1)_{+rac{2}{3}}$
Higgs, higgsinos	$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	$\widetilde{H}_d = \begin{pmatrix} \widetilde{H}_d^0 \\ \widetilde{H}_d^- \end{pmatrix}$	$({f 1}, {f 2})_{-1}$
	$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$	$\widetilde{H}_u = egin{pmatrix} \widetilde{H}_u^+ \ \widetilde{H}_u^0 \end{pmatrix}$	$({f 1}, {f 2})_{+1}$

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

Gravitino Dark Matter and Collider Implications

Why Supersymmetry?

Conservation of R-Parity

- superpotential: $W_{\text{MSSM}} \leftarrow W_{\Delta L} + W_{\Delta B}$
- non-observation of L & B violating processes (proton stability, ...)
- postulate conservation of R-Parity \leftarrow multiplicative quantum number

The lightest supersymmetric particle (LSP) is stable!!!

Supersymmetric Dark Matter Candiates

	LSP	ID	spin	mass	interaction
lightest neutralino $\in MSSM$	$\widetilde{\chi}_1^0$	$\widetilde{B}, \widetilde{W}, \widetilde{H}_u^0, \widetilde{H}_d^0$ mixture	$\frac{1}{2}$	$\mathcal{O}(100 \; { m GeV})$ $M_1, M_2, \mu, aneta$	g, g' weak
gravitino * gravity	\widetilde{G}	superpartner of the graviton	$\frac{3}{2}$	eV – TeV SUSY breaking	$\left(\frac{p}{M_{\rm Pl}}\right)^n$ extremely weak
g	auge ligl gravi eV-l	-MSB gr § nt tino GeV	ravity gaugir weak grav 0.01	$m_{\tilde{G}} \sim \sum_{I} \frac{\langle F_I \rangle}{M_{Pl}} + 2$ MARSE and the second secon	$\sum_{A} \frac{\langle D_A \rangle}{M_{Pl}} \sim \frac{M_{SUSY}^2}{M_{Pl}}$ nomaly-MSB mirage-MSB heavy gravitino I - I 00 TeV

Thermal Gravitino Production

Gravitino Dark Matter from Thermal Production

 \Box Boltzmann Equation

$$\frac{dn_{\widetilde{G}}}{dt} + 3Hn_{\widetilde{G}} = C_{\widetilde{G}}$$

 \square Collision Term

$$C_{\widetilde{G}} = \sum_{i=1}^{3} \frac{3\zeta(3)T^{6}}{16\pi^{3}M_{\text{Pl}}^{2}} \left(1 + \frac{M_{i}^{2}}{3m_{\widetilde{G}}^{2}}\right) c_{i} g_{i}^{2} \ln\left(\frac{k_{i}}{g_{i}}\right)$$

 \Box Gravitino Density

$$\begin{split} \Omega_{\widetilde{G}}^{\mathrm{TP}} h^2 &= \sum_{i=1}^{3} \omega_i \, g_i^2 \left(1 + \frac{M_i^2}{3m_{\widetilde{G}}^2} \right) \ln \left(\frac{k_i}{g_i} \right) \\ &\times \left(\frac{m_{\widetilde{G}}}{100 \,\,\mathrm{GeV}} \right) \left(\frac{T_{\mathrm{R}}}{10^{10} \,\,\mathrm{GeV}} \right) \end{split}$$

 $\Box \ U(1)_Y \times SU(2)_L \times SU(3)_c$

 $c_i = (11, 27, 72)$ $k_i = (1.266, 1.312, 1.271)$ $\omega_i = (0.018, 0.044, 0.117)$ solid: $M_{1,2,3} = m_{1/2}$ dashed: $0.5 M_{1,2} = M_3 = m_{1/2}$ dotted: $M_3 = m_{1/2}$

[...; Bolz, Brandenburg, Buchmüller, '01; Pradler, FDS, '07]

Gravitino Dark Matter and Collider Implications

[Pradler, FDS, '06]

Probing T_R at Colliders in Gravitino DM Scenarios

[Pradler, FDS, '06]

Probing T_R at Colliders in Gravitino DM Scenarios

Thermal Leptogenesis

[Josef Pradler, FDS, hep-ph/0612291]

TP + NTP of Gravitino DM within the CMSSM

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

LSP Dark Matter: Production, Constraints, Experiments

LSP	interaction	production	constraints	experiments
$\widetilde{\chi}_1^0$	g, g'	WIMP	$\leftarrow \text{cold}$	indirect detection (EGRET, GLAST,)
	weak	freeze out		direct detection (cresst, edelweiss, \dots)
	$M_{\rm W} \sim 100~{\rm GeV}$			prod.@colliders (Tevatron, LHC, ILC,)

Gravitino DM @ LHC - Stau NLSP

Very different from the large E_T^{miss} signal of Neutralino DM

Very different from the large E_T^{miss} signal of Neutralino DM

Big-Bang Nucleosynthesis

Big-Bang Nucleosynthesis

[FDS, '06] Cosmological Constraints — $\Omega_{ m DM}$ & BBN

[FDS, '06] Cosmological Constraints — $\Omega_{ m DM}$ & BBN

Catalyzed BBN [Pospelov, '06]

Recent Result: [Hamaguchi et al., '07]

[Cyburt et al., '06; FDS, '06; Pradler, FDS, '07; Kawasaki, Kohri, Moroi, '07; Takayama, '07; Jedamzik, '07; Pradler, FDS, arXiv:0710.2213 & arXiv:0710.4548]

[FDS, hep-ph/0611027]

Cosmological Constraints — $\Omega_{\rm DM}$ & BBN

Gravitino DM @ LHC - Stau NLSP

Very different from the large E_T^{miss} signal of Neutralino DM

[Josef Pradler, FDS, hep-ph/0612291]

Upper Bounds on T_R in the CMSSM with \widetilde{G} Dark Matter

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

Upper Bounds on T_R in the CMSSM with \tilde{G} Dark Matter

[Josef Pradler, FDS, hep-ph/0612291]

Upper Bounds on T_R in the CMSSM with \tilde{G} Dark Matter

[Pradler, FDS, arXiv:0710.4548] Gravitino DM with a GeV scale mass (as obtained in gravity med. SUSY breaking) could be very difficult to probe at the LHC

[Pradler, FDS, arXiv:0710.4548] Gravitino DM with a GeV scale mass

(as obtained in gravity med. SUSY breaking) could be very difficult to probe at the LHC

Gravitino DM with a mass < I GeV

(as obtained in gauge mediated SUSY breaking)

could still be accessible at the LHC

"Stable" Charged Massive Particle @ LHC

"Stable" Charged Massive Particle @ LHC

The smoking gun for

Gravitino (or Axino) Dark Matter

at the LHC

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

Gravitino Dark Matter and Collider Implications

[Pradler, FDS, '07]

Late-Time Entropy Production

Rescuing Thermal Leptogenesis

