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Advances in the computation of quantum amplitudes in supergravity theories raise the ques-
tion whether maximal supergravity in D = 4 spacetime dimensions might actually be free
of ultraviolet divergences. On the other hand, supersymmetric non-renormalization theorems
give no indication of cancellations for anything beyond half-BPS counterterm operators. The
jury is still out, and bets are being taken on the outcome.

Formulating an acceptable quantum theory of gravity remains the prime challenge to funda-
mental theoretical physics. A basic problem in formulating such a theory was already recognized
in the earliest approaches to the problem in the 1930’s: the dimensional character of Newton’s
constant gives rise to ultraviolet divergent quantum correction integrals. In the 1970’s, this was
confirmed explicitly in the first Feynman diagram calculations of the radiative corrections to sys-
tems containing gravity plus matter 1. The time lag between the general perception of the UV
divergence problem and its first concrete demonstration was due to the complexity of Feynman
diagram calculations involving gravity. The necessary techniques were an outgrowth of the long
struggle to Lorentz-covariantly control the quantization of non-abelian Yang-Mills theories in
the Standard Model of weak and electromagnetic interactions and in quantum chromodynamics.



With the advent of supergravity2 in the mid 1970’s, hopes rose that the specific combinations
of quantum fields in supergravity theories might possibly tame the gravitational UV divergence
problem. Indeed, it turns out that all irreducible supergravity theories in four-dimensional
spacetime, i.e. theories in which all fields are irreducibly linked to gravity by supersymmetry
transformations, have remarkable cancellations in Feynman diagrams with one or two internal
loops.

There is a sequence of such irreducible (or “pure”) supergravity models, characterized by the
number N of local (i.e. spacetime-dependent) spinor parameters. In four-dimensional spacetime,
minimal, or N = 1, supergravity thus has 4 supersymmetries corresponding to the components
of a single Majorana spinor transformation parameter. The maximal possible supergravity 3 in
four dimensional spacetime has N = 8 spinor parameters, i.e. 32 independent supersymmetries.

The hopes for “miraculous” UV divergence cancellations in supergravity were subsequently
dampened by the realization that the divergence-killing powers of supersymmetry most likely do
not extend beyond the two-loop order for generic pure supergravity theories 4,5,6,7. The three-
loop anticipated invariant is quartic in curvatures, and has a purely gravitational part given by
the square of the Bel-Robinson tensor 4.

The flowering of superstring theory in the 1980’s and 1990’s, in which the UV divergence
problems of gravity are cured by a completely different mechanism replacing the basic field-
theory point-particle states by extended relativistic object states, pushed the UV divergence
properties of supergravity out of the limelight, leaving the supergravity UV problem in an
unclear state.

Nonetheless, among some researchers a faint hope persisted that at least the maximal N = 8
supergravity might have special UV properties. This hope was bolstered by the fact that the
fact that the maximal supersymmetric Yang-Mills theory, which has N = 4, i.e. 16-component
supersymmetry, is completely free of ultraviolet divergences in four-dimensional spacetime 8.
This was the first interacting UV-finite theory in four spacetime dimensions.

It is this possibility of “miraculous” UV divergence cancellations in maximal supergravity
that has now been confirmed in a remarkable 3-loop calculation by Z. Bern et al. 9. Performing
such calculations at high loop orders requires a departure from textbook Feynman-diagram
methods, because the standard approaches can produce astronomical numbers of terms. Instead
of following the standard propagator & vertex methods for the supergravity calculations, Bern
et al. used another technique which goes back to Feynman: loop calculations can be performed
using the unitarity properties of the quantum S-matrix. These involve cutting rules that reduce
higher-loop diagrams to sums of products of leading-order “tree” diagrams without internal
loops. This use of unitarity is an outgrowth of the optical theorem in quantum mechanics for
the imaginary part of the S-matrix.

In order to obtain information about the real part of the S-matrix, an additional necessary
element in the unitarity-based technique is the use of dimensional regularization to render UV
divergent diagrams finite. In dimensional regularization, the dimensionality of spacetime is
changed from 4 to 4− ǫ, where ǫ is a small adjustable parameter. Traditional Feynman diagram
calculations also often use dimensional regularization, but normally one just focuses on the
leading 1/ǫ poles in order to carry out a renormalization program. In the unitarity-based
approach, all orders in ǫ need to be retained. This gives rise to logarithms in which real and
imaginary contributions are related.

In the maximal N = 8 supergravity theory, the complexity of the quantum amplitudes
factorizes, with details involving the various field types occurring on the external legs of an
amplitude multiplying a much simpler set of scalar-field Feynman diagrams. It is to the latter
that the unitarity-based methods may be applied. Earlier applications 10 of the cutting-rule
unitarity methods based on iterations of two-particle cuts gave an expectation that one might
have cancellations for D < 10/L + 2, where D is the spacetime dimension and L is the number



of Feynman diagram loops (for L > 1). Already, this gave an expectation that D = 4 maximal
supergravity would have cancellations of the UV divergences at the L = 3 and L = 4 loop orders.
This would leave the next significant test at L = 5 loops. In the ordinary Feynman-diagram
approach, a full calculation at this level would involve something like 1030 terms. Even using the
unitarity-based methods, such a calculation would be a daunting, but perhaps not impossible,
task.

The impressive new elements in the 3-loop calculation of Bern et alȧre the completeness of
their calculation and the unexpected further patterns of cancellations found. This could suggest
a possibility of unexpected UV cancellations at yet higher loop orders. Although the various
3-loop diagram classes were already individually expected to be finite on the basis of the earlier
work by Bern et al., the new results show that the remaining finite amplitudes display additional
cancellations, rendering them “superfinite”. In particular, the earlier work employed iterated
2-particle cuts and did not consider all diagram types. The new complete calculation displays
further cancellations between diagrams that can be analyzed using iterated 2-particle cuts and
the additional diagrams that cannot be treated in this way. The set of three-loop diagrams is
shown in Figure 1. The end result is that the sum of all diagram types is more convergent by
two powers of external momentum than might otherwise have been anticipated.
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Figure 1: 3-loop Feynman diagram types leading to unanticipated ‘superfiniteness’ of maximal supergravity at
this loop order. Diagrams (a)-(g) can be analyzed using iterated 2-particle cuts, leading to an expectation of
ultraviolet divergence cancellation. Diagrams (h) and (i) cannot be treated this way, but the result of summing

all diagrams (a-i) is a deeper cancellation of the leading UV behavior than anticipated.

Does such a mechanism cascade in higher-order diagrams, rendering the maximal N=8 theory
completely free of ultraviolet divergences? No one knows at present. Such a scenario might
pose puzzling questions for the superstring program, where it has been assumed that ordinary
supergravity theories need string ultraviolet completions in order to form consistent quantum
theories. On the other hand, there are hints 11 from superstring theory that precisely such an
all-orders divergence cancellation might take place in the N = 8 theory. On the other hand,
it is not clear exactly what one can learn from superstring theory about purely perturbative
field-theory divergences.

One thing that seems clear is that ordinary Feynman diagram techniques coupled with the
“non-renormalization” theorems of supersymmetry are unlikely to be able to explain finiteness
properties of N = 8 supergravity at arbitrary loop order. Earlier expectations4,5,6,7 were that the
first loop order at which divergences that cannot be removed by field redefinitions would be three
loops in all pure D = 4 supergravities. A key element in this anticipation was the expectation
that the maximal amount of supersymmetry that can be linearly realized in Feynman diagram
calculations (aka “off-shell supersymmetry”) is half the full supersymmetry of the theory, or 16



out of 32 supercharges for the maximal N = 8 theory.

Similarly to the way in which chiral integrals of N = 1, D = 4 supersymmetry achieve
invariance from integrals over less than the theory’s full superspace, provided the integrand sat-
isfies a corresponding BPS type constraint, there are analogous invariants involving integration
over varying portions of an extended supersymmetric theory’s full superspace 6. “Half-BPS”
operators require integration over just half the full set of fermionic variables. And if half the full
supersymmetry were the maximal amount that can be linearly realized (so giving strong results
from the corresponding Ward identities), such operators would be the first to be allowed as UV
counterterms.

The results of Ref. 9 show that the half-BPS expectation for the first allowed counterterms is
too conservative in the case the maximal theory. But more recent advances in the understand-
ing of supersymmetric non-renormalization theorems push the divergence onset boundary out
slightly for the maximal theory, so that half-BPS counterterms that require superspace integrals
over half the 32 component superspace are now expected to be the last disallowed countert-
erms instead of the first allowed ones. The resulting current expectations for first divergences
from a traditional Feynman diagram plus non-renormalization viewpoint are shown for various
spacetime dimensions in Table 1.

Dimension D 11 10 8 7 6 5 4

Loop order L 2 2 1 2 3 4 5

Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 ∂6R4 ∂4R4

Table 1: Current maximal supergravity divergence expectations from Feynman rules and non-renormalization
theorems.

The behavior of maximal N = 4 supersymmetric Yang-Mills theory in dimensions D > 4
may be a model for what is happening. Contrary to earlier expectations of UV divergences at
the 4 loop order in D = 5 spacetime, the unitarity-based methods indicate that this SYM onset
should be postponed to the 6-loop order. But here, the standard Feynman diagram methods
have a comeback through the realization that the 4-loop finiteness could be explained using
more sophisticated “harmonic superspace” methods.12

There are two new recent elements to the non-renormalization theorem perspective. One is
the realization that maximal SYM can be formulated in a “1/2 SUSY + 1” formalism which
is not however Lorentz covariant 13. Such a SYM formulation dimensionally reduces to (8,1)
supersymmetry in D = 2. Although considerations of gauge invariance implications in various
dimensions are still ongoing, this formulation should be just the minimum needed to rule out the
half-BPS operators. Moreover, there is an analogous “1/2 SUSY + 1” formulation for maximal
supergravity dimensionally reduced to D = 2, having (16,1) supersymmetry. Providing this can
be successfully lifted to a viable quantization formalism in D = 4, it should be just enough to
rule out the D = 4 3-loop candidate counterterm, now known from Ref. 10 not to occur 14.

The second new approach to the derivation of non-renormalization theorems is via “algebraic
renormalization”, which uses BRST cohomological techniques and has been used to give yet
another demonstration of the finiteness of D = 4, N = 4 SYM 15. Similar techniques for
maximal supergravity are anticipated also to kill the eligibility of the 1/2 BPS D = 4 3-loop
candidate counterterm.

The overall picture that emerges from the non-renormalization theorems and the currently
known divergence results from calculation is that the half-BPS operators are ruled out as UV
counterterms, but that operators with less than half BPS character (thus requiring superspace
integrals with more than half of the theory’s full supersymmetry) are not. The most accessible
test of this proposition will occur at 4 loops in D = 5. As is not uncommon in this subject, bets
are being taken on the outcome, the payoff to be made in bottles of wine.
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