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Ultraviolet Divergences in Gravity
Simple power counting in gravity and supergravity 
theories leads to a naïve degree of divergence 

in D spacetime dimensions. So, for D=4, L=3, one 
expects             . In dimensional regularization, only 
logarithmic divergences are seen (      poles,                    ), 
so 8 powers of momentum would have to come out onto 
the external lines of such a diagram.
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Figure 11. A sample diagram whose divergence
part would need to be evaluated in order to deter-
mine the ultra-violet divergence of a supergravity
theory. The lines represent graviton propagators
and the vertices three-graviton interactions.

ready been used to show that at least for the case
of maximally supersymmetric gravity the onset of
divergences is delayed until at least five quantum
loops [49,50].

4. STATUS OF LOOP CALCULATIONS

Before surveying the main advance since the
last ICHEP conference, it is useful to survey the
status of quantum loop calculations. Here we do
not discuss tree-level calculations which have also
seen considerable progress over the years.

4.1. Status of one-loop calculations

In 1948 Schwinger dealt with one-loop three-
point calculations [18] such as that of the anoma-
lous magnetic moment of leptons described in
Section 2. It did not take very long be-
fore Karplus and Neuman calculated light-by-
light scattering in QED in their seminal 1951
paper [51]. In 1979 Passarino and Veltman pre-
sented the first of many systematic algorithms for
dealing with one-loop calculations with up to four
external particles, leading to an entire subfield de-
voted to such calculations. Due to the complexity
of non-abelian gauge theories, however, it was not
until 1986 that the first purely QCD calculation
involving four external partons was carried out in
the work of Ellis and Sexton [52].

The first one-loop five-particle scattering am-
plitude was then calculated in 1993 by Lance
Dixon, David Kosower and myself [53] for the
case of five-gluon scattering in QCD. This was
followed by calculations of the other five-point
QCD subprocesses [54], with the associated phys-

ical predictions of three-jet events at hadron col-
liders appearing somewhat later [55,56]. A num-
ber of other five-point calculations have also been
completed. One example of a state-of-the-art five-
point calculation was presented in a parallel ses-
sion by Doreen Wackeroth [57], who described the
calculation of pp → t̄tH at next-to-leading order
in QCD [58]. This process is a useful mode for
discovering the Higgs boson as well as measure-
ment of its properties. Other examples are NLO
calculations for e+e− → 4 jets [59,60,61], Higgs
+ 2 jets [62], and vector boson + 2 jet produc-
tion [59,63], which is also important as a back-
ground to the Tevatron Higgs search, if the jets
are tagged as coming from b quarks.

Beyond five-external particles, the only calcu-
lations have been in special cases. By making
use of advanced methods, for special helicity con-
figurations of the particles, infinite sequences of
one-loop amplitudes with an arbitrary number
of external particles but special helicity configu-
rations have been obtained in a variety of the-
ories [39,40]. For the special case of maximal
supersymmetry, six-gluon scattering amplitudes
have been obtained for all helicities [40]. There
has also been a recent calculation of a six-point
amplitude in the Yukawa model [64], as well as re-
cent papers describing properties of six-point in-
tegrals [65]. These examples suggest that that the
technical know-how for computing general six-
point amplitudes is available, though it may be
a rather formidable task to carry it through. An
efficient computer program for dealing with up to
three jets at hadron colliders now exists [56], sug-
gesting that it would be possible add one more
jet, once the relevant scattering amplitudes are
calculated. This would then give a much bet-
ter theoretical handle on multi-jet production at
hadron colliders.

4.2. Status of Higher Loop Computations

Over the years, an intensive effort has gone
into calculating higher loop Feynman diagrams.
A few samples of some impressive multi-loop cal-
culations are:

• The anomalous magnetic moment of lep-
tons, already described in Section 2.

∆ = (D−2)L+2

∆ = 8
1
ε

ε = D−4
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Local supersymmetry implies that the pure curvature 
part of such a D=4, 3-loop divergent structure must be 
built from the square of the Bel-Robinson tensor

This is directly related to the        corrections in the 
superstring effective action, except that in the string 
context such contributions occur with finite coefficients. 
The question remains whether such string theory 
contributions develop poles in              as one takes the 
zero-slope limit               and how this bears on the 
ultraviolet properties of the corresponding field theory.

Deser, Kay & K.S.S
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The consequences of supersymmetry for the ultraviolet 
structure are not restricted, however, simply to  the 
requirement that counterterms be supersymmetric 
invariants.

There exist more powerful “non-renormalization 
theorems,” the most famous of which excludes infinite 
renormalization within D=4, N=1 supersymmetry of chiral 
invariants, given in N=1 superspace by integrals over half 
the superspace:

Z
d2θW (φ(x,θ, θ̄)) , D̄φ = 0
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The strength of a given supersymmetric non-renormalization 
theorem  depends on the extent of linearly realizable, or 
“off-shell” supersymmetry. This is the extent of 
supersymmetry for which the algebra can close without use 
of the equations of motion.

Knowing the extent of this off-shell supersymmetry is tricky, 

and may involve formulations (e.g. harmonic superspace) 
with infinite numbers of auxiliary fields.

For maximal N=4 Super Yang-Mills and maximal N=8 
supergravity, the linearly realizable supersymmetry has been 
known since the 80’s to be at least half the full 
supersymmetry of the theory. 5



The key point about the non-renormalization theorems is 
that allowed counterterms have to be written as full 

superspace integrals for the linearly realized M-extended 
supersymmety, where the integrands must be written 
using a clearly defined set of basic objects, and where the 
integrated counterterms have to satisfy all applicable 
gauge symmetries and also must be locally constructed 

(i.e. written without such operators as         ).

So, in D=4, N=1 supersymmetry, full superspace integrals 
like                           (or “D terms”) are allowed, but chiral 
integrals like                         (or “F terms”) are not.

Z
d4xd4θ f (φ, φ̄)

Z
d4xd2θg(φ)

!−1

Z
d4Mθ
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The full extent of a theory’s supersymmetry, even though it 
may be non-linear, also restricts the infinities since the 

leading counterterms have to be invariant under the original 
unrenormalized supersymmetry transformations.

Assuming that 1/2 supersymmetry is linearly realizable and 
requiring gauge and supersymmetry invariances, one derives 
predictions for the first divergent loop orders in maximal (N=4 
↔ 16 supercharge) SYM and (N=8 ↔ 32 sc.) SUGRA:
Max. SYM first divergences, 
assuming half SUSY off-shell 
(8 supercharges)

Max. SUGRA first divergences, 
assuming half SUSY off-shell 
(16 supercharges)

Dimension D 10 8 7 6 5 4
Loop order L 1 1 20 30 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

1

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

1

Howe, K.S.S & Townsend
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Within the last decade, there have been significant 
advances in the computation of loop corrections in 
quantum field theory.

These developments include the organization of 
amplitudes into a new kind of perturbation theory 
starting with maximal helicity violating amplitudes (MHV), 

then next-to-MHV (NMHV), etc.

They also incorporate a specific use of dimensional 
regularization together with a clever use of unitarity 
cutting rules.

Unitarity-based calculations
Bern, Dixon, Dunbar, Kosower, Perelstein, Rozowsky et al.
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Normally, one thinks of unitarity relations such as the 
optical theorem as giving information only about the 
imaginary parts of amplitudes. However, if one keeps all 
orders in an expansion in                     then loop integrals 
like                   require integrands to have an additional 

momentum dependence                              , where s is a 
momentum invariant. Then, since                                         
and                                           , one can learn about the real 
parts of an amplitude by retaining imaginary terms at 
order     . 

This gives rise to a procedure for the cut construction of 
higher-loop diagrams.

Z
d(4−ε)p

ε

f (s)→ f (s)s−ε/2

s−ε/2 = 1− (ε/2) ln(s)+ . . .

ln(s) = ln(|s|)+ iπΘ(s)

ε = 4−D
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Another key element in the unitarity-based analysis of 
amplitudes is the Passarino-Veltman procedure for the 
reduction of Feynman-diagram propagators, replacing 
numerator factors like            where              by                         
and then canceling corresponding denominators.

This procedure can yield a variety of resulting irreducible 
configurations in the reduced diagram, including boxes, 
triangles and bubbles.

Important simplifications occur if one can show there are 
ultimately no bubbles or triangles in the reduced 
amplitude.

2k · p (k + p)2− k2
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For maximal supergravity amplitudes, another specific 
relation allowing amplitudes to be evaluated is the Kawai-
Lewellen-Tai relation between open- and closed-string 
amplitudes. This gives rise to tree-level relations between 

max. SUGRA and max. SYM field-theory amplitudes, e.g.

Combining this with unitarity-based calculations, in which 
all amplitudes are ultimately reduced to integrals of 
products of tree amplitudes, one has a way to obtain 
higher-loop supergravity amplitudes from SYM 
amplitudes.

2.1 KLT Relations

The KLT relations are between tree-level amplitudes in closed and open string theories, and arise
from the representation of any closed-string vertex operator as a product of open-string vertex
operators,

V closed(zi, z̄i) = V open
left (zi) V

open
right(z̄i) . (2.1)

The left and right string oscillators appearing in Vleft and V right are distinct, but the zero mode mo-
mentum is shared. In the open-string tree amplitude, the zi are real variables, to be integrated over
the boundary of the disk, while in the closed-string tree amplitude the zi are complex and integrated
over the sphere. The closed-string integrand is thus a product of two open-string integrands. This
statement holds for any set of closed-string states, since they can all be written as tensor products of
open-string states. KLT evaluated the (n − 3) two-dimensional closed-string world-sheet integrals,
via a set of contour-integral deformations, in terms of the (n− 3) open-string integrals, and thereby
related the two sets of string amplitudes.

After taking the field-theory limit [7, 8], α′ki · kj → 0, the KLT relations for four-, five- and
six-point amplitudes are [4],

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4) Atree

4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5) Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5) Atree

5 (3, 1, 4, 2, 5) ,

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45A

tree
6 (1, 2, 3, 4, 5, 6)[s35A

tree
6 (2, 1, 5, 3, 4, 6)

+ (s34 + s35)Atree
6 (2, 1, 5, 4, 3, 6)]

+ P(2, 3, 4) .

(2.2)

Here the Mn’s are the amplitudes in a gravity theory stripped of couplings, the An’s are the color-
ordered amplitudes in a gauge theory [27, 28], sij ≡ (ki + kj)2, and P(2, 3, 4) instructs one to sum
over all permutations of the labels 2, 3 and 4. The n arguments of Mn and An are the external
states j, which have momentum kj . The n-point generalization of eq. (2.2) [1, 4] is presented in
appendix A.

Each gravity state j appearing in Mn is the tensor product of the corresponding two gauge theory
states appearing in the An’s on the right-hand side of the equation. In particular, each of the 256
states of the N = 8 supergravity multiplet, consisting of 1 graviton, 8 gravitinos, 28 gauge bosons,
56 gauginos, and 70 real scalars, can be interpreted as a tensor product of two sets of the 16 states of
the N = 4 super-Yang-Mills multiplet, consisting of 1 gluon, 4 gluinos and 6 real scalars. (In string
theory, this correspondence may be understood in terms of the factorization of the closed string
vertex operator for each N = 8 state into a product of N = 4 open string vertex operators.) Thus
a sum over the N = 8 supergravity states can be interpreted as a double sum over a tensor product
of N = 4 super-Yang-Mills states.

4
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In this way, a different set of anticipated first loop 
orders for ultraviolet divergences has arisen from the 
unitarity-based approach:

These anticipations are based on iterated 2-particle 
cuts, however. Full calculations can reveal different 
behavior.

Max. SYM first divergences, 
unitarity-based predictions

Max. SUGRA first 
divergences, unitarity-
based predictions

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

1

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 3 4 5
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂6R4 ∂6R4 ∂4R4

2
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The main recent development is the completion of the 3-loop 
calculation:

Diagrams (a-g) can be evaluated using iterated two-particle 
cuts, but diagrams (h) & (i) cannot. The result is finite at L=3 
in D=4, but the surprize is that the finite parts have an 
unexpected six powers of momentum that come out onto the 
external lines: a          leading effective action correction.

2

FIG. 1: Generalized cuts used to determine the three-loop
four-point amplitude.

harmonic superspace [2]. Explicit computations show
that it is saturated through four loops [11, 13, 18, 20].

The N = 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L = 1. Here R4 is a
shorthand for the supersymmetrization of a particular
contraction of four Riemann tensors [4], and D denotes a
generic covariant derivative. The stronger bound (2), if
applied to N = 8 supergravity, would differ from eq. (1)
beginning at L = 3. It corresponds to a three-loop effec-
tive action beginning with D6R4, not D4R4. As the su-
pergravity finiteness bound (1) is based on only a limited
set of unitarity cuts [11], additional (stronger) cancella-
tions may be missed [13].

To study this issue, we use the unitarity method [12,
18] to build the three-loop four-point N = 8 supergrav-
ity amplitude. In this method, on-shell tree amplitudes
suffice as ingredients for computing amplitudes at any
loop order. The reduction to tree amplitudes is crucial.
It allows the use of the Kawai, Lewellen, Tye (KLT) [21]
tree-level relations between gravity and gauge theory am-
plitudes [11], effectively reducing gravity computations to
gauge theory ones. The original KLT relations express
tree-level closed-string scattering amplitudes in terms of
pairs of open-string ones. The perturbative massless
states of the closed and open type II superstring compact-
ified to four dimensions on a torus, are those of N = 8
supergravity and N = 4 super-Yang-Mills theory, respec-
tively. Thus, in the limit of energies well below the string
scale, the KLT relations express N = 8 supergravity tree
amplitudes as quadratic combinations of N = 4 super-
Yang-Mills tree amplitudes (see e.g. ref. [15]). At tree
level there are no subtleties in taking this limit.

We use the generalized unitarity cuts [22] illustrated in
fig. 1. Together with the iterated two-particle cuts eval-
uated in refs. [11, 18], these cuts completely determine
any massless three-loop four-point amplitude. Since we
are interested in the UV behavior of the amplitudes in
D dimensions, the unitarity cuts must be evaluated in
D dimensions [23]. This renders the calculation more
difficult, because powerful four-dimensional spinor meth-
ods cannot be used. Some of the D-dimensional com-
plexity is avoided by performing internal-state sums in
terms of the simpler on-shell gauge supermultiplet of
D = 10, N = 1 super-Yang-Mills theory instead of the
D = 4, N = 4 multiplet. We have also performed various
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FIG. 2: Loop integrals appearing in both N = 4 gauge-theory
and N = 8 supergravity three-loop four-point amplitudes.
The integrals are specified by combining the diagrams’ prop-
agators with numerator factors given in table I.

four-dimensional cuts, which in practice provide a very
useful guide.

Our computation proceeds in two stages. In the first
stage we deduce the three-loop N = 4 super-Yang-Mills
amplitudes from generalized cuts, including cuts (a)-(c)
in fig. 1, and the iterated two-particle cuts analyzed in
refs. [11, 18]. From the cuts we obtain a loop-integral
representation of the amplitude. The diagrams in fig. 2
describe the scalar propagators for the loop integrals.
The numerator factor for each integral in the super-Yang-
Mills case is given in the second column of table I.

In the second stage we use the KLT relations to
write the cuts of the N = 8 supergravity amplitude as
sums over products of pairs of cuts of the correspond-
ing N = 4 super-Yang-Mills amplitude, including twisted
non-planar contributions. The iterated two-particle cuts
studied in ref. [11], together with the cuts in fig. 1 eval-
uated here, suffice to fully reconstruct the supergravity
amplitude. We find that the three-loop four-point N = 8
supergravity amplitude in D dimensions is,

M (3)
4 =

(κ

2

)8
stuM tree

4

∑

S3

[

I(a) + I(b) + 1
2I(c) + 1

4I(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2I(h) + 2I(i)

]

, (3)

where S3 represents the six independent permutations of
legs {1, 2, 3}, κ is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I(x)(s, t)
are D-dimensional loop integrals corresponding to the
nine diagrams in fig. 2, with numerator factors given in
the third column of table I. The Mandelstam invariants
are s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2. The
numerical coefficients in front of each integral in eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.

Bern, Carrasco, Dixon, Johansson, Kosower & Roiban.

∂6R4
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The 3-loop N=8 supergravity calculation is a remarkable tour 
de force, but does it indicate that there are “miracles” that 
cannot be understood from non-renormalization theorems?

All known SYM divergences in the various dimensions D can 
be understood using non-renormalization theorems.

Recently it has been realized that N=4 SYM can be 
quantized with 9=8+1 off-shell supersymmetries, at the price 
of manifest Lorentz invariance.

A similar formulation for maximal supergravity exists with 
17=16+1 off-shell supersymmetries in D=2. Preliminary 
indications are that a related construction is likely to rule 
out the L=3, D=4 counterterm.

Counterterm counterattack

Baulieu, Berkovits, Bossard & Martin

Bossard, Howe & K.S.S
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Moreover, the no-triangle property for the end result of 
the Passarino-Veltman graph reduction procedure has 
been shown to follow directly from N=8 supersymmetry at 

one loop for the non-local effective action. This argument 

follows closely the known local structure of supersymmetric 
ultraviolet counterterms.

This result can be read two ways: either as an indication of 
the validity of the no-triangle hypothesis, or as a warning 
that the simple box-only form of the reduced diagrams 
may follow from maximal supersymmetry only up to a 
limited loop order, similar to the ostensible finite reach of 
the non-renormalization theorems.

Kallosh

Kallosh; Howe, K.S.S. & Townsend

15



To date, these questions remain unresolved. But, in a 
venerable tradition of marking points to be settled in 
physics, bets have been taken, for bottles of wine.

Which will be the payoff?

                                                     or
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