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Outline
❆ LSND vs MiniBooNe:

❄ energy dependent and  ν vs. ν dependent effect?
❄ New MSW-like effect at short baseline from

✼ gauged B-L
❉ g < 10-5

❉ gauge boson mass < 30 keV

✼ 3 sterile neutrinos with opposite sign B-L
✼ little effect on long baseline active-active 

oscillations                 

❆ astrophysics constraints and “Chameleon” 
mechanism
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LSND
❆  SBL (30 m) conversion of νµ to νe:  P=0.264±0.081%

❆  νµ from µ+decay at rest: Energy 20 ⎯ 53 MeV

❆  An outlier in standard 3 ν model

❆  agreement with other experiments requires exotic  ingredients, e.g. 
2 additional sterile ν (in disagreement with cosmology)
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MiniBooNe
✼ Search for SBL (541 m) conversion of νμ to νe   

✼ Similar L/E to LSND (analysis region 475 MeV ⎯ 3 GeV)

✼ first data with νμ’s does not confirm conventional  ν oscillation 
interpretation of LSND

✼ currently unexplained νe excess below   475 MeV  which doesn’t fit 
conventional  ν oscillation interpretation
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FIG. 3: The top plot shows the MiniBooNE 90% CL limit
(thick solid curve) and sensitivity (dashed curve) for events
with 475 < EQE

ν < 3000 MeV within a two neutrino oscilla-
tion model. Also shown is the limit from the boosted decision
tree analysis (thin solid curve) for events with 300 < EQE

ν <
3000 MeV. The bottom plot shows the limits from the KAR-
MEN [2] and Bugey [32] experiments. The MiniBooNE and
Bugey curves are 1-sided upper limits on sin2 2θ correspond-
ing to ∆χ2 = 1.64, while the KARMEN curve is a “unified
approach” 2D contour. The shaded areas show the 90% and
99% CL allowed regions from the LSND experiment.

ware in the analysis of the data.
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MiniBooNE,
Karmen, Bugey 
versus LSND

End of Story?
⇒still no explanation 
for LSND excess
⇒conventional  3+1  
 ν oscillations are bad 
fit to SBL even w/o 
MiniBooNe
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What if LSND and/or
MiniBooNe  are ν physics?

 considered so far:  
❅ CPV + more than 3+1 Maltoni + Schwetz

❅ new background for νe’s Harvey+Hill

❅ increased νe background + νe 
disappearance Giunti+Laveder

❅ more exotic Schwetz; Pas, Pakvasa+Weiler
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Motivation for  model to reconcile 
LSND with MiniBooNe

❆ Essential differences between LSND, 
MiniBooNE experiments 
❅ ν’s versus ν’s 
❅ similar L/E, different E  

❆  Similarity: MiniBooNE, LSND both have 
oscillation baselines through matter

❆ new physics MSW-like effect ?

_
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A new   gauge interaction?
❆ Anomaly free candidate is gauged B-L (with 3 

sterile ‘right handed’ neutrinos)
❆ interesting SBL effects with Majorana masses 

for sterile ν’s at few eV and “miniseesaw” 
❆ MSW effect  is opposite for ν, ν
❆ MSW effect ~ 2 E ρB-L g2/MV2

❆ ρB-L nonzero and similar for LSND, MiniBooNE
❆ flavor diagonal for active neutrinos
❅  little effect on long baseline oscillations

❆  MSW effect  for short baseline oscillations 
affected by heavier sterile neutrinos

_
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Spontaneous B-L violation and 
Majorana ν masses
❆ a “mini seesaw” 

with eV mass 
singlet N’s

❆ λ, g, λ′〈ϕ〉are 

small
❆ nonzero〈ϕ〉  

required for 
active-sterile 
mixing

M =
(

0 λ〈H〉
λT〈H〉 λ′〈φ〉

)ν N

ν 

N

H ≈ E +
M†M
2E

+V

V =
(
−V I3 0

0 V I3

)
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Anomalous matter effect

❆ m≡ λ〈H〉~0.2 - 0.4 eV, 3 nearly degenerate 
eigenvalues govern large mixing angle LBL oscillations 
in matter at high energy

❆ V ≡ B-L potential, (negative)positive for (anti)ν’s,                     
interesting for SBL for V ~ 10 -9 eV

❆ M≡ λ〈ϕ〉~1-2 eV,  M2 ~ 4VE for MiniBooNE  energy 
region

M2
e f f =

(
m2 mM

mM 4V E +M2 +m2

)
effective mass2 matrix for neutrino oscillations:
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❆ ϑ ≈ m M/(4 VE+ M2)

❆ νμ⇔νe conversion∼ ϑ4

❆ bigger for anti neutrinos (negative V)

❆ for neutrinos, ϑ smaller at high energy 

Heavy ν’s mix with Effective Energy 
dependent mixing angle

M2
e f f =

(
m2 mM

mM 4V E +M2 +m2

)
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Effects of B-L potential
eg m=.3 eV, M1 =1 eV,  others  heavy, V= 0.3 10-9 eV

Energy (MeV)

 μ -e 
oscillation 
probability

at 30 m
neutrinos

antineutrinos

20 40 60 80 100

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
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Effects of B-L potential
eg m=.3 eV, M1 =1 eV,  V= 0.3 10-9 eV

Energy (MeV)

 μ -e 
oscillation 
probability
at 500 m

neutrinos

antineutrinos

200 400 600 800 1000

0.001

0.002

0.003

0.004

0.005
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Note: MiniBooNe currently 
analyzing antineutrino data



Predictions for MiniBoone ν

13

❆ scan over model parameters in range consistent 
with constraints from SBL experiments, especially 
CHOOZ, LSND, MiniBooNe above 475 MeV

Below
475
MeV

Above 475 MeV



Low energy νe excess?
❆ excess corresponds to 1% probability

❆ excess we get is always less than 40%  

14

number
points 

Oscillation probability



Experimental Constraints

❆ MSW potential ∝g2/mV2

❆ need g2/mV2 ∼  100 times larger than usual 
MSW effect from usual weak interactions

❆ need g/mV ∼1/(30 GeV)

❆ precision EW: g<10-4 ⇒ mV < 300 keV
15



New forces shorter range than µm?

❆ Particle Physics constraints:rare decays 
❄ positronium→X+ ϒ
❄  π0→X + ϒ, K→X +ππ
❄ Υ→XX, X+ ϒ, X+ππ...

❆ atomic physics: (g-2)e: g<10-5 for range <(MeV)-1 
⇒ mV < 30 keV

❆ astrophysics: Strongest Constraint from energy 
loss in red giants: g<10-14 for mass <(30 keV)-1 
⇒ mV < 3×10-4 eV  Grifols, Masso, Peris
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weaker 
constraints 

so far



  New forces from light bosons
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Evading Red Giant cooling 
constraint: `Chameleon’ Vector Boson

❆ need to avoid B-L gauge boson  cooling of 
red giant stars

❆ density in stellar core  ∼ 2×105 gm/cm3

❆ Varying mass for vector boson in this 
extreme environment?
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Chameleon forces 

Chameleon forces can be challenging to detect because 
their effective range and strength depends on the local 
environment    
Barrow, Mota, Khoury, Weltman, Gubser, Brax, van de Bruck, Davies, ...Feldman, 
A.E.N,, A.E.N, Walsh 19

Chameleon forces arise  from   
boson fields with   nonlinear 

equations of motion

 All forces are chameleons 
(although nonlinearity sometimes negligible)



Chameleon effect for gauged B-L 

❆ Higgs mechanism requires B-L charged 
scalar

❆  B-L charged scalar can give additional 
screening of B-L in matter (new boson is 
much heavier inside matter) 
❅ note interesting chameleon effects for either sign 

of mass squared term (e.g. force could be infinite 
range in vacuum  but short range near the earth)
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Evading Astro Constraints on gauged 
B-L  

❆ Abelian Higgs model at high density mV∼ρ1/3

❅ for  red giant:  (ρcore/ρearth)1/3∼50
❅  allows new gauge boson on earth to be as much as 

50 times lighter than stellar evolution bound for 
given coupling

❅ 50000 times lighter than SN bound
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Summary
❆ LNSD vs MiniBooNe can be resolved via new 

long range B-L force giving MSW-like effect
❅ can explain up to 40% of low energy MiniBooNe νe 

excess
❅ suppresses SBL neutrino oscillations in MiniBooNe 

analysis region
❅ resonance enhances anti neutrino oscillations at 

MiniBooNe energies

❆ Severe astrophysics constraints avoided
❅ Vector boson with mass due to Higgs mechanism is 

a `chameleon’, whose mass varies in extreme 
environments, allowing Boltzmann suppression of 
red giant cooling
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Backup slides
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anti neutrinos /neutrino 
oscillation expectations

24



MiniBooNe ν’s

25Oscillation probability above 475 MeV

Below 
475
MeV



Neutrino oscillation 
effective Hamiltonian
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Simple renormalizable model of a B-
L gauge Chameleon

❆ charge q scalar field s=|s|eiθ

❆ B-L gauge field Bμ
❆  Abelian Higgs model if  m2 negative

27
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When m2 is negative the paraphoton acquires a vacuum
mass

mV =
√

2qg|s| . (5)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of range λV ≡ m−1

V , and strength α (between 2 neutrons)
relative to gravity

α ≡ g2

4πGNm2
N

. (6)

However in matter, the value of the s condensate can
be substantially larger than it is in vacuum, reducing
the range of the vector force, and changing its apparent
strength. Note that any massive vector particle receiving
mass from the Higgs mechanism has a chameleon nature.
However the chameleon effect is only significant when there
exists a scalar whose potential is flat enough (small enough
mass and self coupling) so that the scalar expectation value
changes significantly.

A. Thin Shell Approximation to Chameleon Vector
Force

We now turn to more detailed consideration of the cou-
pled s and paraphoton dynamics, assuming an s conden-
sate inside macroscopic chunks of ordinary matter.

We begin by reviewing scalar chameleonic fields [Refs].
For a real field ψ coupled to a static source j, with po-

tential V (ψ), a static configuration which minimizes the
total energy solves the equation of motion

−∇2ψ +
∂V

∂ψ
= j . (7)

For a constant source, a solution ψ0 for ψ can be found
such that

∂V

∂ψ

∣∣
ψ=ψ0

= j . (8)

The effective mass for ψ excitations in a constant back-
ground field ψ is

meff ≡ 1
λψ

=

√
∂2V

∂ψ2
. (9)

The screening length λpsi0 is the effective length scale of
the force mediated by the ψ field inside a large constant
density object.

For an object of finite size which is much larger than
λ(ψ0), physical arguments and numerical studies [? ] show
that ψ → ψ0 in the bulk of the object. Outside the surface
of the object, ψ falls rapidly on a scale of order λψ0 . Thus
between large objects, λψ0 is the effective range over which
the force is strong, and effectively only a ”thin shell” of
thickness λ0 acts as a source for the field. This range
is always shorter than the range in vacuum. When λψ0

is much shorter than the vacuum range, then, on scales
between λψ0 and the vacuum range, there is a much weaker
residual force, whose strength αeffcompared to gravity is
of order[? ]

αeff ∼
1

εM1M2GN
, (10)

where ε is the self-coupling [? ].
The case of a vector chameleon is similar, except that

there are two fields s and B, with matter acting as a source
for the B field, and the B field in turn acting as negative
term in the potential for s. To estimate the range of an
exotic force between macroscopic objects, it is useful to
first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine an screening length for the s and B fields. As for
a scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approx-
imation is to take the fields inside the object to equal to
their values the would have inside an infinite sized object.
Outside a sufficiently large object the fields drop exponen-
tially fast beyond their screening lengths.

The Lagrangian for our model is

L = (∂µ + iqgBµ)s∗(∂µ − iqgBµ)s−m2|s|2 − ε

2
|s|4

−1
4
BµνBµν − gBµjµ

To determine the screening lengths for large objects, we
first consider a time independent background charge B−L
charge density j0 = ρ. The s field carries a charge density
ρs

ρs = −iq(D0ss
∗ − s∗D0s) . (11)

For a minimal energy configuration of given charge, we
take s to have the form |s((x)|e−iqwt. Then it is convenient
to define a gauge invariant[3]. field

ω ≡ w + gB0 . (12)

For a spatially uniform configuration, ω is the energy per
unit charge contained in the s condensate, which, for ε = 0,
is simply the s particle mass divided by its charge. In
general nonzero ε raises qω to a value greater than m.
Note that in general ω depends on the background charge
density ρ.

To minimize the total energy for a static configuration
where ω and |s| are position dependent, one must solve the
coupled, nonlinear equations of motion

∇2|s| =
(
m2 + ε|s|2 − q2ω2

)
|s|

∇2ω = −g2ρ + 2q2g2ω|s|2 . (13)

Note that
√

2|q|g|s| acts as the effective mass for ω.
Note also that there is no source for s. The combination√

m2 + ε|s|2 − q2(ω2) acts as an effective mass for s. For
negative m2, there will be an s condensate in vacuum. For
positive m2, the presence of an s condensate in matter is
due to the fact that the ω field provides a negative effective
mass squared term for s.

We now consider a spatially uniform background charge
density ρ, and find the the values of ω and |s| which will



Coupled equations of motion for U(1) 
gauge field and Charged Scalar

28

❆ charge q scalar field s=|s|eiθ 

❆ configuration θ=qwt, Bi=0, i=1,2,3

❆ gauge invariant fields |s|, ω= w+gB0

❆ gauge invariant equations of motion for 
static configuration

3

When m2 is negative the paraphoton acquires a vacuum
mass

mV =
√

2qg|s| . (5)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of range λV ≡ m−1

V , and strength α (between 2 neutrons)
relative to gravity

α ≡ g2

4πGNm2
N

. (6)

For a vector gauge boson, the mass However in matter,
the value of the s condensate can be substantially larger
than it is in vacuum, reducing the range of the force, and
changing its apparent strength. Note that any massive
vector particle receiving mass from the Higgs mechanism
has a chameleon nature. However the chameleon effect is
only significant when there exists a scalar whose potential
is flat enough (small enough mass and self coupling) so
that the scalar expectation value changes significantly.

A. Thin Shell Approximation to Chameleon Vector
Force

We now turn to more detailed consideration of the cou-
pled s and paraphoton dynamics, assuming an s conden-
sate inside macroscopic chunks of ordinary matter.

We begin by reviewing scalar chameleonic fields [Refs].
For a real field ψ coupled to a static source j, with po-

tential V (ψ), a static configuration which minimizes the
total energy solves the equation of motion

−∇2ψ +
∂V

∂ψ
= j . (7)

For a constant source, a solution ψ0 for ψ can be found
such that

∂V

∂ψ

∣∣
ψ=ψ0

= j . (8)

The effective mass for ψ excitations in a constant back-
ground field ψ is

meff ≡ 1
λψ

=

√
∂2V

∂ψ2
. (9)

The screening length λpsi0 is the effective length scale of
the force mediated by the ψ field inside a large constant
density object.

For an object of finite size which is much larger than
λ(ψ0), physical arguments and numerical studies [? ] show
that ψ → ψ0 in the bulk of the object. Outside the surface
of the object, ψ falls rapidly on a scale of order λψ0 . Thus
between large objects, λψ0 is the effective range over which
the force is strong, and effectively only a ”thin shell” of
thickness λ0 acts as a source for the field. This range
is always shorter than the range in vacuum. When λψ0

is much shorter than the vacuum range, then, on scales
between λψ0 and the vacuum range, there is a much weaker
residual force, whose strength αeffcompared to gravity is
of order[? ]

αeff ∼
1

εM1M2GN
, (10)

where ε is the self-coupling [? ].
The case of a vector chameleon is similar, except that

there are two fields s and B, with matter acting as a source
for the B field, and the B field in turn acting as negative
term in the potential for s. To estimate the range of an
exotic force between macroscopic objects, it is useful to
first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine an screening length for the s and B fields. As for
a scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approx-
imation is to take the fields inside the object to equal to
their values the would have inside an infinite sized object.
Outside a sufficiently large object the fields drop exponen-
tially fast beyond their screening lengths.

To determine the screening lengths for large objects, we
first consider a time independent background charge B−L
charge density ρ. The s field carries a charge density ρs

ρs = −iq(D0ss
∗ − s∗D0s) . (11)

For a minimal energy configuration of given charge, we
take s to have the form |s((x)|e−iqwt. Then it is convenient
to define a gauge invariant[3]. field

ω ≡ w + gB0 . (12)

For a spatially uniform configuration, ω is the energy per
unit charge contained in the s condensate, which, for ε = 0,
is simply the s particle mass divided by its charge. In
general nonzero ε raises qω to a value greater than m.
Note that in general ω depends on the background charge
density ρ.

To minimize the total energy for a static configuration
where ω and |s| are position dependent, one must solve the
coupled, nonlinear equations of motion

∇2|s| =
(
m2 + ε|s|2 − q2ω2

)
|s|

∇2ω = −g2ρ + 2q2g2ω|s|2 . (13)

Note that
√

2|q|g|s| acts as the effective mass for ω.
Note also that there is no source for s. The combination√

m2 + ε|s|2 − q2(ω2) acts as an effective mass for s. For
negative m2, there will be an s condensate in vacuum. For
positive m2, the presence of an s condensate in matter is
due to the fact that the ω field provides a negative effective
mass squared term for s.

We now consider a spatially uniform background charge
density ρ, and find the the values of ω and |s| which will
minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

gauge field acts as 
negative m2

scalar screens 
gauge field



When is  chameleon effect significant 
for Abelian Higgs model?

➡   |m|>(ερ)1/3 ,m2<0: Chameleon effect minimal

➡   |m|<(ερ)1/3:  High Density Chameleon Regime   
In constant density matter have solution with constant ω=ω0

29

4

minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

The total energy density subject to this constraint is min-
imized when

ω2
0 =

(m2 + ε|s0|2)
q2

. (15)

The equations Eq. (15) and Eq. (16) allow us to solve for
both ω0 and |s0| inside large constant density objects, for
either sign of m2. For m2 > 0, the solution is

ω0 =
m22 4

3 + 3
(
−

√
(ερ/q)2 − 16m6

27 + ερ/q

) 2
3

3q2 2
3

(
−

√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

, (16)

while for m2 < 0, the solution is

ω0 =
−m22 4

3 − 3
(√

(ερ/q)2 − 16m6

27 − ερ/q

) 2
3

3q2 2
3

(√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

. (17)

For both cases

|s0| =
√

ρ

2qω0
. (18)

For positive m2, in the limit

|m| " (ερ)
1
3 , (19)

the equations Eq. (17) and Eq. (19) become

ω0 ≈ m/q

|s| ≈
√

ρ

2qm
, (20)

while for negative m2, in this limit we have

ω0 ≈ ερ

2qm2

|s0| ≈ m√
ε

. (21)

Note that in the latter case the expectation value of the
scalar field is approximately the same inside a macroscopic
object and in vacuum, and the chameleon effect is negligi-
ble.

For either sign of m2, in the limit

|m| % (ερ)
1
3 (22)

an approximate solution is

ω0 ≈ (ερ) 1
3

q

|s| ≈
(ρ

ε

) 1
3

. (23)

The effective screening length of the paraphoton inside
a macroscopic object is given by

$V ≡ (
√

2qg|s|)−1 =
√

ω0

2qg2ρ
. (24)

Comparison of equations Eq. (15), Eq. (25) and Eq. (??)
shows that when m2 > 0, the condition for an s condensate
inside matter to be energetically favorable is, up to factors
of order 1, equivalent to the condition

$V <
∼R , (25)

i.e., the object should be larger than the vector screening
length.

When m2 < 0, the chameleon effect is significant when
the value of ε satisfies Eq. (23). The constraint in turn
bounds the mass of the physical scalar excitations of the
condensate. If $(0)V

−1 is the mass of the paraphoton in vac-
uum, and mH is the vacuum mass of the scalar associated
with the Higgs mechanism, then the condition Eq. (23) for
a significant chameleon effect may be written

mH % g2ρ$(0)V

2
∼ ρ/〈s〉20 . (26)

We now turn to the conditions for equations Eq. (15)
and Eq. (16) to yield the correct values of the vector and
scalar fields deep inside the object. We assume $V % R,
and note that for constant s, the equation for ω is just a
Yukawa equation. Hence as long as s is constant inside
the object, assuming that ω = ω0 deep inside the object
and falls to zero on a length scale $V outside the object is
consistent with equation Eq. (14). Note that outside the
object, when ω ≈ ω0, the s field does not decay. Hence s
decays to its vacuum value at a longer length scale than ω
field does. Beyond a distance 1/ω0 from the object, since
ω ≈ 0, s decays with an effective length scale $S

$S ≡
1

meff
=

1√
m2 + εs2

0

=
1

qω0
. (27)

When both $V and $S are much smaller than the size R of
the object, the total energy density for the field configura-
tion is dominated by the volume inside the object, and so
we expect the solution deep inside the objects to approach
equations Eq. (15) and Eq. (16). We will refer to the case
of $S,V % R as the thin shell case. Comparison of eqs
Eq. (25) shows that for a given R there is a lower limit on
g for any value of m, ε for a thin shell

g >∼

√
1

ρR3
(28)

that is, the charge of the object has to be larger than 1/g2.
For centimeter sized objects of typical solid density, a thin
shell is possible only for g >∼ 10−12.

Another case where equations (15) and (16) yield the
correct values is when the chameleon effect is negligible,
with $V ≈ $(0)V . The experimental constraints on this case
have already been analyzed extensively [? ].

A final case is where $(0)V % R, but $(0)S is larger than
R. In this case screening of charged objects is energetically
favorable, but the s and ω fields will not approach constant
values. We will refer this this case as a the non thin shell
chameleon, and discuss it in the next section.

At high density gauge
boson mass proportional

to density1/3
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When m2 is negative the paraphoton acquires a vacuum
mass

mV =
√

2qg|s| . (5)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of range λV ≡ m−1

V , and strength α (between 2 neutrons)
relative to gravity

α ≡ g2

4πGNm2
N

. (6)

For a vector gauge boson, the mass However in matter,
the value of the s condensate can be substantially larger
than it is in vacuum, reducing the range of the force, and
changing its apparent strength. Note that any massive
vector particle receiving mass from the Higgs mechanism
has a chameleon nature. However the chameleon effect is
only significant when there exists a scalar whose potential
is flat enough (small enough mass and self coupling) so
that the scalar expectation value changes significantly.

A. Thin Shell Approximation to Chameleon Vector
Force

We now turn to more detailed consideration of the cou-
pled s and paraphoton dynamics, assuming an s conden-
sate inside macroscopic chunks of ordinary matter.

We begin by reviewing scalar chameleonic fields [Refs].
For a real field ψ coupled to a static source j, with po-

tential V (ψ), a static configuration which minimizes the
total energy solves the equation of motion

−∇2ψ +
∂V

∂ψ
= j . (7)

For a constant source, a solution ψ0 for ψ can be found
such that

∂V

∂ψ

∣∣
ψ=ψ0

= j . (8)

The effective mass for ψ excitations in a constant back-
ground field ψ is

meff ≡ 1
λψ

=

√
∂2V

∂ψ2
. (9)

The screening length λpsi0 is the effective length scale of
the force mediated by the ψ field inside a large constant
density object.

For an object of finite size which is much larger than
λ(ψ0), physical arguments and numerical studies [? ] show
that ψ → ψ0 in the bulk of the object. Outside the surface
of the object, ψ falls rapidly on a scale of order λψ0 . Thus
between large objects, λψ0 is the effective range over which
the force is strong, and effectively only a ”thin shell” of
thickness λ0 acts as a source for the field. This range
is always shorter than the range in vacuum. When λψ0

is much shorter than the vacuum range, then, on scales
between λψ0 and the vacuum range, there is a much weaker
residual force, whose strength αeffcompared to gravity is
of order[? ]

αeff ∼
1

εM1M2GN
, (10)

where ε is the self-coupling [? ].
The case of a vector chameleon is similar, except that

there are two fields s and B, with matter acting as a source
for the B field, and the B field in turn acting as negative
term in the potential for s. To estimate the range of an
exotic force between macroscopic objects, it is useful to
first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine an screening length for the s and B fields. As for
a scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approx-
imation is to take the fields inside the object to equal to
their values the would have inside an infinite sized object.
Outside a sufficiently large object the fields drop exponen-
tially fast beyond their screening lengths.

To determine the screening lengths for large objects, we
first consider a time independent background charge B−L
charge density ρ. The s field carries a charge density ρs

ρs = −iq(D0ss
∗ − s∗D0s) . (11)

For a minimal energy configuration of given charge, we
take s to have the form |s((x)|e−iqwt. Then it is convenient
to define a gauge invariant[3]. field

ω ≡ w + gB0 . (12)

For a spatially uniform configuration, ω is the energy per
unit charge contained in the s condensate, which, for ε = 0,
is simply the s particle mass divided by its charge. In
general nonzero ε raises qω to a value greater than m.
Note that in general ω depends on the background charge
density ρ.

To minimize the total energy for a static configuration
where ω and |s| are position dependent, one must solve the
coupled, nonlinear equations of motion

∇2|s| =
(
m2 + ε|s|2 − q2ω2

)
|s|

∇2ω = −g2ρ + 2q2g2ω|s|2 . (13)

Note that
√

2|q|g|s| acts as the effective mass for ω.
Note also that there is no source for s. The combination√

m2 + ε|s|2 − q2(ω2) acts as an effective mass for s. For
negative m2, there will be an s condensate in vacuum. For
positive m2, the presence of an s condensate in matter is
due to the fact that the ω field provides a negative effective
mass squared term for s.

We now consider a spatially uniform background charge
density ρ, and find the the values of ω and |s| which will
minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

scalar

vector
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Source
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