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Outline
% LSND vs MiniBooNe:

*#* energy dependent and V vs. vV dependent effect?
* New MSWH-like effect at short baseline from
% gauged B-L
# g<10®
** gauge boson mass < 30 keV
% 3 sterile neutrinos with opposite sign B-L

% little effect on long baseline active-active
oscillations

# astrophysics constraints and "Chameleon”
mechanism

2




C R S

*

LSND

SBL (30 m) conversion of v, to Ve: P=0.264+0.081%
vy from p*decay at rest: Energy 20 — 53 MeV
An outlier in standard 3 v model

agreement with other experiments requires exotic ingredients, e.q.
2 additional sterile v (in disagreement with cosmology)

MiniBooNe

Search for SBL (541 m) conversion of vV to Ve

% Similar L/E to LSND (analysis region 475 MeV — 3 GeV)

first data with v,’s does not confirm conventional V oscillation
interpretation of LSND

currently unexplained Ve excess below 475 MeV which doesn'’t fit

conventional V oscillation interpretation
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What if LSND and/or
MiniBooNe are v physics?

4 considered so far:

# CPV + more than 3+l Maltoni + Schwetz_
* new background for Ve'S ﬂ-[arveyﬂ-[i[[

* increased V. background + Ve
disappearance Giunti+Laveder

* more exotic Schwetz; Pas, Pakvasa+Weiler
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Motivation for model to reconcile
LSND with MiniBooNe

% Essential differences between LSND,
MiniBooNE experiments

¥ VS versus Vs

% similar L/E, different E

% Similarity: MiniBooNE, LSND both have
oscillation baselines through matter

% new physics MSW-like effect ?
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A new gauge interaction?

* Anomaly free candidate is gauged B-L (with 3
sterile ‘right handed’ neutrinos)

% interesting SBL effects with Majorana masses
for sterile Vs at few eV and "miniseesaw”

# MSW effect is opposite for v, v
# MSW effect ™ 2 E ps-L g2/My?
¥ pg.L nonzero and similar for LSND, MiniBooNE
* flavor diagonal for active neutrinos
* little effect on long baseline oscillations

% MSW effect for short baseline oscillations
affected by heavier sterile neutrinos




Spontaneous B-L violation and
Majorana v masses

% a "mini seesaw”
with eV mass
singlet N's

# N g, N (b) are

small
% nonzero (&)

required for
active-sterile
mixing




Anomalous matter effect

effective mass? matrix for neutrino oscillations:

mM
— \mM AVE + M? + m?

# m= A (H) ~0.2 - 0.4 eV, 3 nearly degenerate

eigenvalues govern large mixing angle LBL oscillations
In matter at high energy

# V = B-L potential, (negative)positive for (anti)vs,
interesting for SBL forV ~ 10 7 eV

# M= A (b) ~1-2 eV, M2~ 4VE for MiniBooNE energy
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Heavy v ’s mix with Effective Energy

dependent mixing angle
# 3 =~ m M/(4 VE+ M?)

# Ve Ve conversion~ 34

% bigger for anti neutrinos (negative V)

# for neutrinos, 3 smaller at high energy

Ve m? mM
/I \mM 4VE + M?+ m?




Effects of B-L potential

eg m=.3 eV, M; =1 eV, others heavy, V= 0.3 107 eV

0.0030 -
0.0025 -

0.0020 -

!'l -e. 0.0015 -
oscillation 7
probability ™"

at 30 m 0.0005 -

neutrinos

Energy (MeV)




Effects of B-L potential
eg m=.3 eV, M;=l eV, V=0.3 10 eV
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Predictions for MiniBoone v

% scan over model parameters in range consistent
with constraints from SBL experiments, especially
CHOOZ, LSND, MiniBooNe above 475 MeV

~ MiniBooNE Anti—Neutrino Oscillation Probability
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Low energy v . excess?

% excess corresponds to 1% probability

% excess we get is always less than 40%

MiniBooNE Oscillation Probability at Low Energy

200 L ]

number .
points s i

1000

e

440101 R 0003 R E) 0005

Oscillation probability 4




Experimental Constraints

* MSW potential °<g%/my?

* need g?/my? ~ 100 times larger than usual
MSW effect from usual weak interactions

* need g/my ~1/(30 GeV)

% precision EW: g<10™* = my < 300 keV
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New forces shorter range than pm?

% Particle Physics constraints:rare decays

# positronium—=X+ Y weaker
% 10X + Y, KX +1171 constraints
so far

% 1T XX, X+ Y, X+1111..0

% atomic physics: (g-2)e: g<10~ for range <(MeV)!
= My < 30 keV

% astrophysics: Strongest Constraint from energy
loss in red giants: g<10-'* for mass <(30 keV)™!

= my < 3X10™* eV  Gufols, Wasse, Peric
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New forces from light bosons
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Evading Red Giant cooling
constraint;: ‘Chameleon’ Vector Boson

* need to avoid B-L gauge boson cooling of
red giant stars

# density in stellar core ~ 2x10°> gm/cm3

% Varying mass for vector boson in this
extreme environment?




Chameleon forces

Chameleon forces arise from
boson fields with nonlinear
equations of motion

All forces are chameleons %

(although nonlinearity sometimes negligible)

Chameleon forces can be challenging to detect because
their effective range and strength depends on the local

environment

AEN,, A EN, Walsh 19




Chameleon effect for gauged B-L

% Higgs mechanism requires B-L charged
scalar

% B-L charged scalar can give additional
screening of B-L in matter (new boson is
much heavier inside matter)

* note interesting chameleon effects for either sign
of mass squared term (e.g. force could be infinite
range in vacuum but short range near the earth)
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Evading Astro Constraints on gauged
B-L

*# Abelian Higgs model at high density my~p!/3

S FOI" red gian'h (pcore/pear'l'h)l/3~50

* allows new gauge boson on earth to be as much as
50 times lighter than stellar evolution bound for
given coupling

* 50000 times lighter than SN bound
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Summary

#* LNSD vs MiniBooNe can be resolved via new
long range B-L force giving MSW-like effect

# can explain up to 40% of low energy MiniBooNe V.
excess

* suppresses SBL neutrino oscillations in MiniBooNe
analysis region

# resonance enhances anti neutrino oscillations at
MiniBooNe energies

% Severe astrophysics constraints avoided

* Vector boson with mass due to Higgs mechanism is
a “chameleon’, whose mass varies in extreme
environments, allowing Boltzmann suppression of
red giant cooling
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anti neutrinos /neutrino
oscillation expectations

Cumulative MimiBooNE Anti—Neutrino to Neutrino Ratio
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MiniBooNe »’s

MiniBooNE Oscillation Probability
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Neutrino oscillation
effective Hamiltonian

> .
S . () mM,;
Hy = EA 2F VA 2F (-mf't-f.i AV E 4 f'l-ff) '




Simple renormalizable model of a B-
L gauge Chameleon

% charge q scalar field s=|s|e'®
% B-L gauge field By,
% Abelian Higgs model if m? negative

L = (0, +iqgB,)s™ (0" —iqgB")s — m?|s|® — §|S|4

1 ) .
_ZBWBM — gB,j"
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Coupled equations of motion for U(1)
gauge field and Charged Scalar

% charge q scalar field s=|s|e'®
% configuration 6=qwt, Bi=0, i=1,2,3
# gauge invariant fields Is|, w= w+gBo

% gauge invariant equations of motion for

static confiquration
gauge field acts as

Vis| = (m®+€|s|” — ¢°w?)|s|  negative m?
V2, — —g2p+2q292w13\2 scalar screens

gauge field




When is chameleon effect significant
for Abelian Higgs model?

= |m|>(ep)/3 ,m2<0: Chameleon effect minimal

= |ml<(gp)/3: High Density Chameleon Regime

In constant density matter have solution with constant w=wQ

(ep)? At high density gauge
boson mass proportional
to density'/3
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Thin Shell Near a Large Object

% vector field falls ty St
exponentially on scale ¢v Charged
Source

#% scalar field falls on larger
g 7
of scales ¢, ¢ ls

vector

V?s| (m? + €|s]” — ¢°w?) s
Viw = —g¢°p+2¢°g°wls|* .




The “lower’-energy region S\ ,rvmer MiniBooNE

- examining lower energy
- excess persists in 200 < E_ < 300 MeV bin U pdate

reconstructed neutrino energy, 200<E <3000 MeV
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