

Search for the Standard Model Higgs Boson at High Mass at the Tevatron

Lidija Živković, Columbia University

and collaborations

XLIIId Rencontres de MORIOND La Thuile, March 1-8, 2008

Outline

- Motivation
 - Theoretical overview
- Analysis overview
 - $\left.\begin{array}{c} \text{ CDF} \\ \text{ D} \end{array}\right\} \text{ up to 2.4 fb}^{-1}$
- Combined Limits
- Future perspectives

Motivation - The Higgs Mechanism

- Essential ingredient of the Standard Model
 - Complex scalar field with potential
- Used to break the el. weak symmetry.....

 $\mathbf{M}_{w^{\pm}} = \frac{1}{2} \mathbf{v} g$ $\mathbf{M}_{z} = \frac{1}{2} \mathbf{v} g / \cos \theta_{w} = \mathbf{M}_{w} / \cos \theta_{w}$

- and to generate fermion masses: $m_f = g_f v / \sqrt{2} \implies g_f = m_f \sqrt{2} / v$
- Search for the Higgs boson is a key issue for experiments at current and future colliders
- Experimental challenges:
 - Higgs boson discovery
 - Measurement of Higgs boson parameters (couplings to bosons and fermions) and the Higgs self coupling
- Mass limits: lower 114.4 GeV/c² and upper 182 GeV/c² from combined direct and indirect searches

Production and Decay

Olumbia [Iniversity

IN THE CITY OF NEW YORK

- Dominant production process is gluon fusion
- Associated with vector boson is also significant

- Dominant decay for high mass Higgs boson is WW
- For m_H = 160 GeV, σ×BR = 390 fb; several hundreds H→WW so far at either DØ or CDF (2 fb⁻¹ per exp.) few tens to two leptons and neutrinos

Analysis overview

- To suppress hadron backgrounds we look into final states where both W decay to leptons, i.e. ee, $\mu\mu$ and $e\mu$
- Major backgrounds: Diboson (mainly WW), W+jets, Drell-Yan, tt, Multijets
- Signature:
 - Two energetic isolated leptons with opposite charge
 - Large missing transverse energy

Olumbia [Iniversity **Analysis overview**

Characteristics:

IN THE CITY OF NEW YORK

- In signal WW pair is coming from spin 0 Higgs boson
 - Leptons prefer to point in same direction

- Di-lepton opening angle $\Delta \phi_{\mu}$ discriminates against dominant WW background.
- Dilepton mass is small and broad
 - Discriminates against Drell-Yan

02/03/2008

L. Ž. High Mass Higgs at

Multivariate techniques

- In order to better separate signal from backgrounds we use different multivariate techniques: CDF combines Leading Order (LO) Matrix Elements and Neural Networks (NN), DØ uses Neural Networks
- LO Matrix Elements are used to calculate event probabilities

$$P_{m}(x_{obs}) = \frac{1}{\langle \sigma_{m} \rangle} \int \frac{d\sigma_{m}^{th}(y)}{dy} \epsilon(y) G(x_{obs}, y) dy$$

ME efficiency resolution
and calculate likelihood ratio:
$$LR(x_{obs}) \equiv \frac{P_{H}(x_{obs})}{P_{H}(x_{obs}) + \sum_{i} k_{i} P_{i}(x_{obs})}$$

• Neural network:

Columbia [Jniversity

- CDF uses ME and kinematic variables as inputs
- DØ uses kinematic variables as inputs
- Single output from NN is used as discriminant variable

02/03/2008

CDF - selection

- Basic Selection:
 - Lepton trigger selection
 - Several categories of lepton(track) pairs with opposite charge divided into two groups – high signal to background and low signal to background
 - Lepton and missing E_T cuts applied to reduce backgrounds: $p_T(I_1) > 20 \text{ GeV}, p_T(I_2) > 10 \text{ GeV}, \not{\!\!E}_T \cdot \sin(\min(\pi/2, \Delta \phi(\not{\!\!E}_T, I \text{ or jet}))) > 25 \text{ GeV},$ $n_{jets} < 2 (p_T(jet) > 15 \text{ GeV}, |\eta| < 2.5), m_{\parallel} > 16 \text{ GeV}, trilepton veto$
 - Data are well described

CDF – event yields

CDF Run II Prelimin	.ary ∫	$\mathcal{L}=2.$	$4\mathrm{fb}^{-1}$
$M_H = 1$	$60 \text{ GeV}/c^2$		
$H \rightarrow WW$	9.5	\pm	1.1
WW	300.3	±	38.1
WZ	20.5	\pm	3.1
ZZ	18.2	\pm	2.7
$tar{t}$	20.8	\pm	3.8
DY	104.0	\pm	23.0
$W\gamma$	72.4	\pm	18.7
W + jets	89.2	\pm	22.8
Total BG	626	±	54
Data		661	
		HWW	ME+NN

- All five channels are combined leading to 626 expected events from known SM processes and 661 observed events
- 9.5 signal events are expected for Higgs mass of 160 GeV

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK CDF – final discriminant

• ME calculated from lepton 4-vectors and missing transverse energy is used as an input to NN together with several kinematic distributions

CDF - results

- Various sources of systematic uncertainties affect the background estimation and the signal efficiency:
 - Theoretical uncertainty of background production cross sections (10-15%), lepton id (2%), trigger efficiency (~5%)
- Binned maximum likelihood fit of NN discriminant used to determine limit

 $\sigma \times BR < 0.8 \text{ pb } @ 95\% \text{ CL}$ for m_H=160 GeV

Observed Limit/ $\sigma_{_{SM}}$ (NNLL) ~ 1.6 Expected Limit/ $\sigma_{_{SM}}$ (NNLL) ~ 2.4

DØ - selection

- Basic Selection:
 - Combination of several lepton triggers ensures trigger efficiency ~95%
 - Two isolated leptons with opposite charge
 - Lepton and missing E_T
 cuts applied to reduce backgrounds
 - Final selection cuts optimized for each Higgs mass separately
 - Data are well described

02/03/2008

	ee	eμ	μμ
т _н [GeV]	160	160	160
$H \rightarrow WW$	0.78±0.02	1.64±0.03	1.29 ± 0.01
Z/γ → II	0.0±0.0	0.2±0.1	1.3±0.02
WW,WZ	5.5±0.3	13.2±0.1	9.7±0.1
tt	1.4±0.1	1.25±0.1	0.6±0.1
W+jet/γ	6.7±2.0	7.5±1.9	1.1±1.1
Multi-jet	0.1±0.05	2.1±0.2	0.0±0.0
Total Background	13.8±2.0	24.2±2.0	12.6±2.0
Data	15	20	10

- Combining three analyzed channels there are 50.6 expected events from known SM processes and 45 observed events
- 3.71 signal events expected for Higgs mass of 160 GeV

DØ – final discriminant

Olumbia [Iniversity

IN THE CITY OF NEW YORK

 NN trained on WW background samples, run on all backgrounds; separate optimization for each channel and Higgs mass

• Final result determined from fit to NN output

DØ – result

- Various sources of systematic uncertainties affect the background estimation and the signal efficiency:
 - Dominated by background normalization (6-20%), others include theoretical uncertainty of background production cross sections (~4%), Jet Energy Scale – JES (5-10%), electron and muon reconstruction efficiencies and resolutions (2-11%), trigger efficiency (~5%)

WH->WWW(*)->I[±]vI[±]v+X

- Helps to cover intermediate mass region
- Basic selection requires two same charge leptons with $p_T > 15 \text{ GeV}$
- Two main types of backgrounds:

'olumbia [Jniversi

IN THE CITY OF NEW YORK

- With two real same charge leptons like WZ→lvll
- Instrumental measured from data:
 - "QCD" with misidentified lepton
 - "flip charge" when charge of the lepton is mismeasured
- Main source of systematic uncertainty is coming from instrumental background (~30%)
- Limit: 0.9 pb at 95% CL for m_{H} =160 GeV

тт

Combined limits - CDF and DØ

- Combined limits from December 2007
 - New results shown today not yet included!
- Expect both experiments to show improved limits next week

- New results shown today not yet included!
- CDF limits improved more than 20% (10% from improved analysis)

- $m_{_{\rm H}}$ = 160 GeV: (exp) 3.1 \rightarrow 2.4

We expect significant improvement of DØ limits (next week)

tron

- Still no evidence for Higgs boson but the Tevatron is closing in on the SM at large values of Higgs mass
 - Current limit on the cross-section is only 1.4 times bigger then what we expect from Standard model for $m_{H} = 160 \text{ GeV}$
- We expect further improvements from
 - More data (luminosity)
 - Further improvement of lepton identification
 - Optimization of multivariate techniques
 - Including new channels
- Look for better limits already next week and expect exciting summer

Backup

02/03/2008

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK CDF and DØ experiments in Run II

- Both detectors are upgraded in Run II
 - New silicon micro-vertex trackers
 - New tracking systems
 - Upgraded muon chambers

DØ: new solenoid, new pre-showers, LØ for SMT in RunIIb, new L1Cal trigger

02/03/2008

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Tevatron projections

- Including data taking efficiency projected full data set will be:
 - 5.5 fb⁻¹ by the end of 2009
 - 6.8 fb⁻¹ by the end of 2010
- Assumption: projected sensitivity for mH = 115 GeV 2 times higher than current for full data set
 - Improvment from 2005-2007 was ~1.7
 - Possibilities:
 - Better b-tagging
 - Better dijet mass resolution
 - Better multivariate techniques

02/03/2008

CDF WW limits

			-							
	110	120	130	140	150	160	170	180	190	200
$-2\sigma/\sigma_{SM}$	31.24	9.99	4.85	3.05	2.21	1.31	1.43	2.05	3.19	4.31
$ -1\sigma/\sigma_{SM} $	42.00	13.45	6.49	4.08	2.98	1.76	1.88	2.73	4.26	5.79
$Median/\sigma_{SM}$	58.85	18.83	9.10	5.75	4.14	2.44	2.64	3.79	5.93	8.09
$+1\sigma/\sigma_{SM}$	83.87	26.82	12.82	8.07	5.84	3.44	3.74	5.34	8.38	11.50
$+2\sigma/\sigma_{SM}$	116.11	36.63	17.77	11.14	8.04	4.78	5.11	7.41	11.44	15.83
Observed/ σ_{SM}	54.31	15.84	5.40	3.23	2.44	1.56	1.79	2.81	5.19	9.98

Table 1: 95% C.L. using the Neural Network output templates.

đ

тт

DØ, Tevatron limits

DØ

TABLE IV: Combined 95% C.L. limits on $\sigma \times BR(H \rightarrow bb/W^+W^-)$ for SM Higgs boson production. The limits are reported in units of the SM production cross section times branching fraction.

$m_H (GeV/c^2)$	105	115	125	140	160	180	200	
Expected	4.4	5.8	7.5	5.7	2.8	4.4	10.5	
Observed	4.5	6.4	10.9	10.2	2.6	5.0	12.7	

Tevatron

TABLE XII: Median expected and observed 95% CL cross section ratios for the combined CDF and DØ analyses.

	$110~{\rm GeV/c^2}$	$115~{\rm GeV/c^2}$	$120~{\rm GeV/c^2}$	$140~{\rm GeV/c^2}$	$160~{\rm GeV/c^2}$	$180~{\rm GeV/c^2}$	$200~{\rm GeV/c^2}$
Expected	3.8	4.3	5.0	4.2	1.9	2.9	6.2
Observed	5.0	6.2	10.2	7.8	1.4	2.2	8.7

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK **DØ, Tevatron LLR plots**

Distributions can be interpreted as follows:

- The separation between LLR_b and LLR_{s+b}
 provides a measure of the discriminating power of the search. This is the ability of the analysis to separate the s + b and b-only hypotheses.
- The width of the LLRb distribution provides an estimate of how sensitive the analysis is to a signal-like fluctuation in data, taking account of the presence of systematic uncertainties. For example, when a 1σ background, fluctuation is large compared to the signal expectation, the analysis sensitivity is thereby limited.
- The value of LLR_{obs} relative to LLR_{s+b} and LLR_b indicates whether the data distribution appears to be more signal-like or background-like. As noted above, the signicance of any departures of LLR_{obs} from LLR_b can be evaluated by the width of the LLRb distribution.

02/03/2008