

Sneutrino cold dark matter in extended MSSM models¹

Chiara Arina

University of Turin

43rd Rencontres de Moriond

C. Arina (University of Turin)

Sneutrinos CDM

1-8/03/2008 1 / 9

MSSM conserving *R*-parity

$$\begin{array}{c|c} (\widetilde{\nu},\widetilde{e}^-)_L & (\nu,e^-)_L \\ \widetilde{e}_R^- & e_R^- \end{array}$$

 $\tilde{\nu}\bar{\tilde{\nu}} \rightarrow f\bar{f}, ZZ, W^+W^-, hh...$ annihilation

$$\begin{split} W_{\text{MSSM}} &= \epsilon_{ij} (\mu \hat{H}_i^1 \hat{H}_j^2 - Y_l \hat{H}_i^1 \hat{L}_j \hat{R}) \\ V_{\text{soft}} &= (M_L^2) \, \tilde{L}_i^* \tilde{L}_i + [\epsilon_{ij} (\Lambda_l H_i^1 \tilde{L}_j \tilde{R}) + \text{h.c.}] \end{split}$$

$$\Omega h^2 \propto \langle \sigma_{ann} v \rangle^{-1} \qquad \langle \sigma_{ann} v \rangle \rightarrow \qquad \begin{cases} \tilde{\nu} \tilde{e}_L \quad \rightarrow \quad \nu e, ZW^-, \dots \\ \tilde{e}_L \tilde{\tilde{e}}_L \quad \rightarrow \quad f \bar{f}, ZZ, W^+W^-, hh... \text{ coannihilation} \end{cases}$$

Direct detection \rightarrow elastic scattering on nuclei

Scalar interaction through Z and Higgs *t*-channel exchange

$$\sigma_{\mathcal{N}} = \sigma_Z + \sigma_{h,H}$$

$$\xi \sigma_{nucleon}^{(scalar)} \xi = \min(1, \frac{\Omega_{\bar{\nu}}h^2}{\Omega_{CDM}h^2})$$

C. Arina (University of Turin)

Sneutrinos CDM

• dips \rightarrow Z and Higgs (h,H,A, H^{\pm}) poles; sharp drop \rightarrow W^+W^- threshold

- $\tilde{\nu}$ -Z coupling huge \rightarrow low relic abundance and high detection rate
- Extensions of the MSSM in relation with neutrino physics reduce ~Z coupling

C. Arina (University of Turin)

Sneutrinos CDM

Inclusion of a right–handed neutrino superfield \hat{N}

$$W_{LR} = \epsilon_{ij}(\mu \hat{H}_i^1 \hat{H}_j^2 - Y_l \hat{H}_i^1 \hat{L}_j \hat{R} + Y_\nu \hat{H}_i^2 \hat{L}_j \hat{N})$$

$$V_{\text{soft}} = (M_L^2) \tilde{L}_i^* \tilde{L}_i + (M_N^2) \tilde{N}^* \tilde{N} - [\epsilon_{ij}(\Lambda_l H_i^1 \tilde{L}_j \tilde{R} + \Lambda_\nu H_i^2 \tilde{L}_j \tilde{N}) + \text{h.c.}]$$

 $\tilde{\nu}_1 = -\sin\theta \; \tilde{\nu}_L + \cos\theta \; \tilde{N}$

mixing with the sterile right-handed sneutrino \tilde{N} induces a reduction of $\sin^2 \theta$ in the $\tilde{\nu}$ -Z coupling

C. Arina (University of Turin)

Explicit lepton number violating term from a 5-dim operator $\mathcal{L} = g/M_{\Lambda}(\epsilon_{ij}L_iH_j)(\epsilon_{kl}L_kH_l) + h.c.$

$$\begin{cases} \tilde{\nu}_+ = \frac{1}{\sqrt{2}} \left(\tilde{\nu}_L + \tilde{\nu}_L^* \right) \\ \tilde{\nu}_- = \frac{-i}{\sqrt{2}} \left(\tilde{\nu}_L - \tilde{\nu}_L^* \right) \\ \Delta m^2 \equiv m_+^2 - m_-^2 = 2m_B^2 \end{cases}$$

Strong constraints from neutrino physics

C. Arina (University of Turin)

Sneutrinos CDM

See-saw model with M = 1 TeV

$$W_{Maj} = \epsilon_{ij}(\mu \hat{H}_i^1 \hat{H}_j^2 - Y_l \hat{H}_i^1 \hat{L}_j \hat{R} + Y_\nu \hat{H}_i^2 \hat{L}_j \hat{N}) + \frac{1}{2} M \hat{N} \hat{N}$$

$$V_{\text{soft}} = (M_L^2) \tilde{L}_i^* \tilde{L}_i + (M_N^2) \tilde{N}^* \tilde{N} - [(m_B^2) \tilde{N} \tilde{N} + \epsilon_{ij} (\Lambda_l H_i^1 \tilde{L}_j \tilde{R} + \Lambda_\nu H_i^2 \tilde{L}_j \tilde{N}) + \textbf{h.c.}]$$

Inelasticity and mixing with the sterile right-handed component included

C. Arina (University of Turin)

Ωh^2 and $\xi \sigma_{nucleon}^{(scalar)}$ detection rate for models with M = 1 TeV

Conclusion and work in progress

- $\vec{\nu}$ viable CDM with RH \tilde{N} fields and in seesaw models Indirect detection rates for \bar{p} , \bar{D} in the sensitivity of incoming experiments M = 1 TeV arises naturally in inverse seesaw models
- Sneutrinos as dominant or subdominant DM halo components (5 GeV < m_v < 1 TeV)
- Sneutrino configurations compatible with the direct detection bounds

C. Arina (University of Turin)

Sneutrinos CDM

1-8/03/2008 7 / 9

Indirect detection rates for antiproton and antideuteron

 \mathbf{LR}

 \mathbf{LR}

Maj $M = 1 \,\mathrm{TeV}$

Sneutrinos CDM

(≣)•

Ωh^2 and $\xi \sigma^{(scalar)}_{nucleon}$ detection rate for models with $M=10^9~{\rm GeV}$

- Heavy sneutrino configurations and subdominant CDM halo components
- Phenomenology only slightly changed respect to the MSSM since the Majorana mass drives the behavior of the right-handed sneutrino fields

Sneutrinos CDM