Light Hadrons and New Enhancements in J/ψ Decays at BESII

Guofa XU Representing BES Collaboration

Institute of High Energy Physics Chinese Academy of Sciences Beijing, China

xugf@ihep.ac.cn

Outline

- Introduction of BEPC/BESII
- 0⁺⁺ Resonances
- O⁻⁺ Resonances
- New Enhancements/structures
- Summary

XLIIId-RENCONTRES DE MORIOND, La Thuile, Italy

Introduction

- BES (Beijing Spectrometer) is a large general purpose solenoidal detector at Beijing Electron Positron Collider (BEPC).
 - Beam energy range from 1.0 to 2.8 GeV
 Luminosity at J/ψ peak 5 × 10³⁰cm⁻²s⁻¹

Meson spectrum—Scalars(0++)

- **I**=**O** : $f_0(600)(\sigma)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_0(1700)$, $f_0(1790)$...
- I=1/2: K*₀(800)(κ), K*₀(1430), K*(1950)(?),...
- **I**=1: a₀(980), a₀(1450), ...

Quark Model: no enough room for all of these scalar particles

Review of Glueball Spectrum

- Some QCD-based theories make predictions to the glueball mass.
- LQCD predicts the lowest glueball state is 0⁺⁺. The mass is around 1.5 GeV ~ 1.7 GeV.
- LQCD predicts the next lightest glueball is 2⁺⁺. The mass is around 2.4 GeV.
- The mix of glueball with ordinary qq̄ meson makes the situation more difficult.

Glueball candidates: $f_0(1500)$, $f_0(1700)$, ...

Meson spectrum—Scalars(0++)

f₀(1370), f₀(1500), f₀(1700), f₀(1790)

J/ψ → γππ, γKK→ωKK →φππ, φKK

PWA results

Lower 0⁺⁺: 0⁺⁺ is strongly preferred over 2⁺⁺

 $M = (1466 \pm 6 \pm 16) \text{ MeV}$ $\Gamma = (108^{+14}_{-11} \pm 21) \text{ MeV}$

• $f_0(1370)$ cannot be excluded.

■ Higher 0^{++} : $f_0(1710)$ or $f_0(1790)$ or both?

$$M = (1765_{-3}^{+4} \pm 11) \,\mathrm{MeV}$$

$$\Gamma = (145 \pm 8 \pm 23) \,\mathrm{MeV}$$

	J/ψ	ι→γππ			
PWA					
	J/	$\psi \to \gamma X, \ X \to \tau$	$\tau^+\pi^-$		
12	Mass (MeV/c^2)	$\Gamma ({\rm MeV}/c^2)$	$\mathcal{B}(\times 10^{-4})$		
$f_2(1270)$	$1262^{+1}_{-2} \pm 8$	$175^{+6}_{-4} \pm 10$	$9.14 \pm 0.07 \pm 1.48$		
$f_0(1500)$	$1466 \pm 6 \pm 20$	$108^{+14}_{-11} \pm 25$	$0.67 \pm 0.02 \pm 0.30$		
$f_0(1710)$	$1765^{+4}_{-3} \pm 13$	$145\pm8\pm69$	$2.64 \pm 0.04 \pm 0.75$		
Phys. Lett. B642 (2006) 441					
$J/\psi \to \gamma X, \ X \to \pi^0 \pi^0$					

	$J/\psi \to \gamma X, \ X \to$	$\pi^0\pi^0$
	Mass (MeV/c^2) $\Gamma (MeV/c^2)$	$\mathcal{B}(\times 10^{-4})$
$f_2(1270)$	same as charged channel	$4.00 \pm 0.09 \pm 0.58$
$f_0(1500)$	same as charged channel	$0.34 \pm 0.03 \pm 0.15$
$f_0(1710)$	same as charged channel	$1.33 \pm 0.05 \pm 0.88$

BESII $J/\psi \rightarrow \gamma K^+K^-$ and $\gamma K^0_S K^0_S$

$J/\psi \rightarrow \omega KK$

PWA J/ψ→ωσ $\rightarrow \omega f_0(980)$ $\rightarrow \omega f_0(1710)$ $\rightarrow \omega f_2(1270)$ $\rightarrow \omega f_2$ (1525) or $\omega f_2(1565)$ $\rightarrow \omega f_2(2150)$ \rightarrow K₁(1400)K →K₁(1950)K

J/ψ→ ϕ ππ, ϕ KK

La Thuile, Italy

J/ψ→ ϕ ππ, ϕ KK

PWA	Phys	s. Lett. B607	7 (2005) 243		
Channel	Mass	Width	$B(J/\psi ightarrow \phi X,$	$B(J/\psi \rightarrow \phi X,$	ΔS
	$\left(\mathrm{MeV/c^2}\right)$	$({\rm MeV/c^2})$	$X o \pi\pi)$	$X \to K ar{K})$	
			$(\times 10^{-4})$	$(imes 10^{-4})$	
$f_0(980)$	965 ± 10	see text	5.4 ± 0.9	4.5 ± 0.8	1181
$f_0(1370)$	1350 ± 50	265 ± 40	4.3 ± 1.1	0.3 ± 0.3	83
$f_0(1500)$	PDG	PDG	1.7 ± 0.8	0.8 ± 0.5	51
$f_0(1790)$	1790^{+40}_{-30}	270^{+60}_{-30}	6.2 ± 1.4	1.6 ± 0.8	488
$f_2(1270)$	1275 ± 15	190 ± 20	2.3 ± 0.5	0.1 ± 0.1	241
σ			1.6 ± 0.6	0.2 ± 0.1	120
$f_{2}'(1525)$	1521 ± 5	77 ± 15	<u> 111</u> 98	7.3 ± 1.1	440
$f_0(1710)$	PDG	PDG	12112	2.0 ± 0.7	64
		XLIIIG-RENCO	NTRES DE MORIOND,		

La Thuile, Italy

$f_0(1370), f_0(1500), f_0(1710), f_0(1790)$

- $f_0(1370)$ has been seen in $J/\psi \rightarrow \phi \pi \pi$, but not in $J/\psi \rightarrow \omega \pi \pi$
- No peak of the $f_0(1500)$ directly seen in $J/\psi \rightarrow \phi K\overline{K}, \omega K\overline{K}, \phi \pi\pi, \omega \pi\pi$, but in proton-proton scattering is quite clear
- $f_0(1710)$ is observed in both $J/\psi \rightarrow \phi K\overline{K}$ and $J/\psi \rightarrow \omega K\overline{K}$, but with $Br(J/\psi \rightarrow \omega f_0(1710) \rightarrow \omega K\overline{K})/Br(J/\psi \rightarrow \phi f_0(1710))$ $) \rightarrow \phi K\overline{K}) \sim 6$, which is against a simple ss configuration for this state
- $f_0(1790)$ which is seen in $\pi\pi$ rather than $K\bar{K}$

H. Y. CHENG hep-ph/0609229

- f₀(1710) is composed primarily of the scalar glueball
- f₀(1500) is close to an SU(3) octet

The glueball content of $f_0(1500)$ is very tiny because an SU(3) octet does not mix with the scalar glueball.

f₀(1370) consists of an approximate SU(3) singlet with some glueball component(~10%)

Meson spectrum—Pesudoscalars(0⁻⁺)

η η(1295), η**(1405)**, η**(1475)**

• η (1295): The first radial excitation of η

- $\eta(1405)$: Decays mainly though $a_0(980)\pi$ (or direct $K\overline{K}\pi$)
- η(1475): Mainly decay to K*(892)K

Quark Model: Only two particles needed at here

Which is the first radial excitation of $\eta'(958)$? -- $\eta(1475)$ or $\eta(1405)$? PWA of $J/\psi \rightarrow \gamma\gamma\rho$, $\gamma\gamma\phi$, $\gamma\gamma\phi$, ...

 $J/\psi \rightarrow \gamma\gamma V(\rho,\phi)$

XLIIId-RENCONTRES DE MORIOND, La Thuile, Italy

 $J/\psi \rightarrow \gamma\gamma V(\rho,\phi)$

Comparison with other experiments

Decay	Mass	Width	$B(J/\psi \rightarrow \gamma X)*$	Experi-
Mode	(MeV/c^2)	(MeV/c^2)	$B(X \to \gamma V)$	ment
			$(\times 10^{-4})$	
$f_1(1285)$	1281.9 ± 0.6	24.0 ± 1.2	0.34 ± 0.09	PDG ^[1]
$ ightarrow \gamma ho^0$	$1271~\pm~7$	31 ± 14	$0.25\pm0.07\pm0.03$	MarkIII ^[7]
	$1276.1\pm8.1\pm8.0$	$40.0\pm8.6\pm9.3$	$0.38\pm0.09\pm0.06$	BESII
$\eta(1440)$	1400-1470	50-80	$0.64 \pm 0.12 \pm 0.07$	PDG ^[1]
$ ightarrow \gamma ho^0$	1432 ± 8	90 ± 26	$0.64 \pm 0.12 \pm 0.07$	MarkIII ^[7]
	$1424 \pm 10 \pm 11$	$101.0 \pm 8.8 \pm 8.8$	$1.07 \pm 0.17 \pm 0.11$	BESII
$\eta(1440)$			< 0.82 (95% C.L)	BESII
$\rightarrow \gamma \phi$				

arXiv:0712.1411

 $J/\psi \rightarrow (\omega, \phi) KK\pi$

TABLE V: The mass, width, and branching fractions of J/ψ decays into $\{\omega, \phi\} X(1440)$

$J/\psi \to \omega X(1440)$	$J/\psi \to \omega X(1440)$
$(X \to K^0_S K^+ \pi^- + c.c.)$	$(X \to K^+ K^- \pi^0)$
$M = 1437.6 \pm 3.2 \text{ MeV}/c^2$	$M = 1445.9 \pm 5.7 \; \mathrm{MeV}/c^2$
$\Gamma = 48.9 \pm 9.0~{\rm MeV}/c^2$	$\Gamma = 34.2 \pm 18.5 \ {\rm MeV}/c^2$
$B(J/\psi \to \omega X(1440) \to \omega K)$	$K_S^0 K^+ \pi^- + c.c.) = (4.86 \pm 0.69 \pm 0.81) \times 10^{-4}$
$B(J/\psi \to \omega X(1440) \to \omega K)$	$(K^+ K^- \pi^0) = (1.92 \pm 0.57 \pm 0.38) \times 10^{-4}$
$B(J/\psi \to \phi X(1440) \to \phi K)$	${}^{0}_{S}K^{+}\pi^{-} + c.c.) < 1.93 \times 10^{-5}$ (90% C.L.)
$B(J/\psi \to \phi X(1440) \to \phi K$	$(+K^{-}\pi^{0})$ < 1.71 × 10 ⁻⁵ (90% C.L.)

η(1440) (η(1405), η(1475))

• η (1440) has been seen in $J/\psi \rightarrow \gamma\gamma\rho$, $\omega KK\pi$, but not clear structure around 1440 MeV in $J/\psi \rightarrow \gamma\gamma\phi$, $\phi KK\pi$

Octet: ss

Glueball : $\Gamma_{\eta \to \gamma \rho} : \Gamma_{\eta \to \gamma \phi} = 1 : 1$ (X)
Singlet-Octet Mixing: $\Gamma_{\eta \to \gamma \rho} : \Gamma_{\eta \to \gamma \phi} = 9 : 2$ (?)
Glueball-qq meson mixing: (?)

New Enhancements/Structures at BESII

A narrow enhancement is observed in $J/\psi \rightarrow \gamma p\overline{p}$. Assuming that the $p\overline{p}$ system is in an S-wave resulted in a resonance with $M=1859^{+3+5}$ -10-25 MeV and $\Gamma < 30$ MeV. The data not precise enough to determine the angular distribution.

 $Br(J/\psi \rightarrow \gamma X)Br(X \rightarrow p\overline{p})=(7.0\pm0.4)\times10^{-5}$

- According to the theoretical calculation in hep-ph/0502127(G.J Ding and M.L Yan), the branching fraction of the enhancement(baryonium resonance)decaying to $2(\pi^{+}\pi^{-})\eta$ are much higher than other decay modes, such as $(\pi^{+}\pi^{-})\eta$ and 3η .
- Mass and width from $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \pi^+ \pi^- \eta)$ m=1827.4±8.1 MeV/c², Γ =54.2±34.5 MeV/c² Mass and width from $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \gamma \rho)$ m=1836.3±7.9 MeV/c², Γ =70.3±23.1 MeV/c² Combination results m=1833.7±6.1 MeV/c², Γ =67.7±20.3 MeV/c² Br($J/\psi \rightarrow \gamma X$)Br($X \rightarrow \pi^+ \pi^- \eta'$)=(2.2±0.4)×10⁻⁴

(J/ψ→γη'(958)ππ) X(1835)

BW-fit

- M=1833.7±6.1±2.7 MeV/c²
- Γ=67.7±20.3±7.7 MeV/c²
- Br(J/ $\psi \rightarrow \gamma X$)
 - ***Br(X**→η'π⁺π⁻)
 - (2.2±0.4±0.4)*10⁻⁴

Phys. Rev. Lett. 95 (2005) 262001

Eur. Phys. J. C53 (2008) 15

Br(J/ψ→ω**X)**·**Br(X→pp)**<1.5*10⁻⁵ 95% C.L.

3/5/2008

La Thuile, Italy

 $(J/\psi \rightarrow \gamma \omega \phi)$ \mathbf{O}^{++}

■ Br(J/ $\psi \rightarrow \gamma X$)-Br(X $\rightarrow \omega \phi$)=(2.61±0.27±0.65)*10⁻⁴

 $(J/\psi \rightarrow \gamma \omega \omega) 0^{-+}$

PWA	Phys. Rev. D73 (2006) 112007					
resonance	Events	eff($\%$)	$Br(imes 10^{-3})$	Sys Err($\%$)	ΔS	Sig.
$\eta(1760)$	1045 ± 41	1.15	1.98 ± 0.08	16.4	280	$> 10\sigma$
$f_0(1710)$	180 ± 37	1.27	0.31 ± 0.06	25.1	23.5	6.5σ
$f_2(1910)$	151 ± 32	1.68	0.20 ± 0.04	64.9	23.5	5.8σ
$f_2(1640)$	141 ± 26	1.08	0.28 ± 0.05	59.6	21.4	5.5σ

3/5/2008

La Thuile, Italy

Observation of a new 1-resonance Y(2175) at BaBar

A structure at 2175MeV was observed in

 e⁺e⁻ → γ_{ISR} φf₀(980),
 e⁺e⁻ → γ_{ISR} K⁺K⁻f₀(980)
 initial state radiation processes

 $M = 2175 \pm 10 \pm 15 \text{ MeV}$ $\Gamma = 58 \pm 16 \pm 20 \text{ MeV}$

FIG. 6 (color online). The $e^+e^- \rightarrow \phi(1020)f_0(980)$ cross section, with about 10% of the $\phi \pi \pi$ contribution, obtained via ISR in the $K^+K^-\pi^+\pi^-$ (circles) and $K^+K^-\pi^0\pi^0$ (squares) final states. The curves represent results of the fits described in the text.

Phys. Revre Dorte (2006) 091103(R) La Thuile, Italy

 $J/\psi \rightarrow \eta \phi f_0(980)$ (BESII)

0.5 0.75 1(a) M($\pi^{+}\pi^{-}$)(GeV/c²)

ALIIIU-REINGONI RES DE MORIOND,

La Thuile, Italy

C

0.25

ոյիս

1.25

29

A peak around 2175 MeV/c² is observed in $J/\psi \rightarrow \eta \phi f_0(980)$

M²(η f₀(980)) vs. M²(η φ) (Dalitz plot)

$$(J/\psi \rightarrow \eta \phi f_0(980))$$
 1

■ M=2.186±0.010±0.006 GeV/c² Γ =0.065±0.023±0.017 GeV/c² ■ Br(J/ ψ → η Y(2175)) \cdot Br(Y→ ϕ f₀(980)) \cdot Br(f₀→ π ⁺ π) = (3.23±0.75±0.73)*10⁻⁴

~5σ

arXiv:0712.1143

PWA: 1⁻⁻

- **Pole position:** $(1576^{+49+98}_{-55-91}) \text{ MeV}/c^2 i(409^{+11+32}_{-12-67}) \text{ MeV}/c^2$
- Br(J/ ψ →X π^{0})-Br(X→K⁺K⁻) = (8.5±0.6^{+2.7}_{-3.6})*10⁻⁴

~7.2σ

Phys. Rev. Lett. 97. (2006) 142002

La Thuile, Italy

Summary

Many Hadrons: f₀(1370), f₀(1790), η(1440)(η(1405), η(1475)), ... Glueball Candidates **f₀(1500)** in J/ $\psi \rightarrow \gamma \pi^{+} \pi^{-}$, $\gamma \pi^{0} \pi^{0}$ f₀(1710) in $J/\psi \rightarrow \gamma K^+K^-$, $\gamma K_s K_s$, ωK^+K^- New enhancements/structures x(1835)(0⁻⁺) in J/ $\psi \rightarrow \gamma$ (ππη') (η' \rightarrow ηππ, γρ) 7.7σ x(1859)(0⁻⁺) in $J/\psi \rightarrow \gamma(p\overline{p})$ $x(1760)(0^{-+})$ in $J/\psi \rightarrow \gamma(\omega\omega)$ **>10**σ x(1810)(0⁺⁺) in $J/\psi \rightarrow \gamma(\omega\phi)$ **>10**σ $x(1576)(1^{--})$ in $J/\psi \rightarrow \pi^{0}(K^{+}K^{-})$ 7.2σ $y(2175)(1^{--})$ in $J/\psi \rightarrow \eta(\phi f_0(980))$ 5.0σ

XLIIId-RENCONTRES DE MORIOND, La Thuile, Italy

BESIII/BEPCII project

BEPCII design goal:

luminosity: 1×10³³ @ 1.89 GeV

BESIII design goal:

MDC: Momentum resolution: $\frac{\sigma_{P_t}}{P_t} = 0.32\% \oplus 0.37\%$ dE/dX resolution: 6-7%

EMC : CsI(TI) crystals

Energy resolution: 2.5%@1GeV Position resolution: 6mm@1GeV

Sub-system	BESIII	BESII		
	$\sigma_{xx} = 130 \mu \mathrm{m}$		$250 \mu\mathrm{m}$	
MDC	△P/P=0.5% @ 1GeV	SC magnet	<u>2.4%(a</u>	0 <u>1GeV</u>
	$\sigma_{\rm dE/dx} = (6-7)$	8.5%		
EM Calarimator	$\Delta E/E = 2.5\% @ 1 GeV$		<u>20%@1GeV</u>	
	$\sigma_z = 0.6 \text{cm} @ 1$	3cm @ 1 GeV		
TOE detector	σ _T (ps)=100 ps	barrel	180 <u>ps</u>	barrel
IOF delector	110 <u>ps</u>	endcap	350 <u>ps</u>	endc ap
μ counters	9 layers		3 layers	
Magnet	1.0 <u>tesla</u>		0.4 <mark>tesla</mark>	