Single Top Quark Production at the Tevatron

on behalf of the DØ and CDF collaborations

Rencontres de Moriond EW 2008

SM single top quark production

SM cross section: $\sigma_{tot} = 3 \text{ pb}$

$$\sigma_s = .88 \text{ pb} \ \sigma_t = 1.98 \text{ pb}$$

Tevatron Goals:

- Discover single top quark production
- Measure production cross sections σ_s, σ_t
- First direct measurement CKM matrix element V_{tb}
- Study top quark spin polarization
- Understand as background to many searches
- Establish techniques that will also be used in Higgs searches Reinhard Schwienhorst, Michigan State University

• Recent results:

- Limits on W' from DØ and CDF:
 - M(W') > 800 GeV to 825 GeV, depending on couplings and decays
- FCNC gluon coupling limits from DØ:
 - limit coupling $\kappa^c/\Lambda < 0.15$ TeV⁻¹ and $\kappa^u/\Lambda < 0.038$ TeV⁻¹

DØ: PLB 641:423-431 (2006)

Batavia, Illinois

Fermilab Tevatron

Proton-antiproton collider CM energy 1.96TeV → Energy frontier Instantaneous luminosity reaching 300E30cm⁻²s⁻¹ → Euminosity frontier

Fiscal Year 08 • Fiscal Year 07 • Fiscal Year 06 • Fiscal Year 05 • Fiscal Year 04
Fiscal Year 03 • Fiscal Year 02

Single top event selection

proton q' w w w w w w w b b b antiproton

- Basic event signature (e or μ)
 - Single lepton trigger or lepton+jets trigger
 - One high- E_T leptons
 - $E_T > 20 \text{ GeV} \text{ or } 15 \text{ GeV}$
 - Missing transverse energy
 - Missing E_T > 25 GeV or 15 GeV
 - -2-3 high- E_T jets (2-4 jets)
 - $E_T > 15 \text{ GeV}$
 - At least one b-tag
 - Expect ~ 50 signal events per fb⁻¹
 - After b-tagging
 - S:B ~ 1:20

- Classifiers:
 - Likelihood function
 - Neural network
 - Bayesian neural networks
 - Boosted decision trees
 - Matrix Element

- Systematic uncertainties:
 - Normalization uncertainties, for example background composition (10-30%)
 - Shape uncertainty, for example jet energy scale, b-tagging
 - Implement as nuisance parameters

- Update to 0.9 fb⁻¹ analysis (3.4 σ, PRL 98, 181802 (2007))
 - Improved Bayesian Neural Network analysis
 - Improved Matrix Element analysis

Bayesian neural networks

Reinhard Schwienhorst, Michigan State University

- Combination using BLUE method
 - Using large sets of ensembles for weights and correlations

DØ 0.9 fb⁻¹

Reinhard Schwienhorst, Michigan State University

11

- Analyses based on 2.2 fb⁻¹
- Increased acceptance
 - MET trigger
 - more muons

- Now including 3-jet channel
- Improved background model

Multivariate likelihood function

- Likelihood functions built from 7 variables (10 for 2-tags)
 - Kinematic variables, b-tag NN, t-channel ME, kinematic solver

Reinhard Schwienhorst, Michigan State University

Neural Networks

4 separate s+t networks built from 10-14 variables each

- Including b-tag NN, kinematic variables, angular correlations

Matrix element

- Analyze 2-jet and 3-jet events

- Include ttbar matrix element for both 2-jet and 3-jet events
- Include b-tag NN as weight in likelihood ratio

- The search for single top quark production is turning into measurements in the single top final state
 - Both experiments have seen 3 σ evidence
 - $|V_{tb}|$ measurement to better than 15%
- Further improvements in progress
 - CDF combination
 - DØ update with larger dataset

