Yukawa Unification in SO(10) SUSY GUTs

Howard Baer Sabine Kraml Sezen Sekmen (presenter, METU / Ankara) Heaya Summy arXiv:0801.1831 43rd Rencontres de Moriond, EW 1-8 March 2008 La Thuile

- SO(10) SUSY GUTs are highly motivated.
 - All matter fields in 16-dim irreduciible repr (includes v_R); two Higgs doublets in 10-dim irreducible repr.
 - Neutrino sector leads to successful theory of baryogenesis
 - Left-right symmetric: solves strong CP problem, naturally induces R parity conservation
- Yukawa unification in SO(10) SUSY GUTs:
 - Superpotential contains the following term $\hat{f} \supset y\psi(16)_3\phi(10)_H\psi(16)_3 + ...$
 - At tree level Yukawa couplings are unified at the GUT scale: $y_t = y_b = y_\tau = y_{v_\tau} \equiv y$
 - At loop level there are a few % corrections
 - Yukawa unification is an important signature!

SO(10) input parameters and outcome

MCMC: Compatible regions for GSH

We used the Markov Chain Monte Carlo technique to search for regions with

- Good Yukawa unification R < 1.1 where $R = max(y_t, y_b, y_\tau)/min(y_t, y_b, y_\tau)$
- WMAP compatible DM relic density: 0.094 < Ωh² < 0.136

 $R \le 1.10, R \le 1.05, R \le 1.10 \& \Omega \le 0.136, R \le 1.05 \& \Omega \le 0.136$

MCMC: Compatible regions for GSH

We used the Markov Chain Monte Carlo technique to search for regions with

- Good Yukawa unification R < 1.1 where $R = max(y_t, y_b, y_\tau)/min(y_t, y_b, y_\tau)$
- WMAP compatible DM relic density: 0.094 < Ωh² < 0.136

 $R \le 1.10, R \le 1.05, R \le 1.10 \& \Omega \le 0.136, R \le 1.05 \& \Omega \le 0.136$

Results: LHC signatures

GSH:

- 1st / 2nd generation scalar masses \ge 2 TeV
- 3rd generation scalars and heavy Higgses ~1 - 3 TeV

Results: LHC signatures

GSH:

- 1st / 2nd generation scalar masses $\geq 2 \ TeV$
- 3rd generation scalars and heavy Higgses ~1 - 3 TeV
- Gluino mass ~ 300 400 GeV
- Light neutralinos/chargino masses
 ~ 100 400 GeV

- Gluino pair production with $\sigma \sim 100 \text{ pb}$
- Gluino 3-body decays to b-rich final states via $\tilde{g} \rightarrow tb \tilde{\chi}_1^{\pm}, b\overline{b} \tilde{\chi}_1^0, b\overline{b} \tilde{\chi}_2^0$
- Dilepton edge from $\tilde{\chi}_2^0 \rightarrow l \overline{l} \tilde{\chi}_1^0$ decays at $m_{\tilde{\chi}_2^0} m_{\tilde{\chi}_1^0} \sim 50 75 GeV$

WSH: Good R + good Ω solutions have light pseudoscalar higgs, so they are excluded by latest D0/CDF $B_s \rightarrow \mu\mu$ measurements.

Results: Dark matter in SO(10)

- In general SO(10) SUSY GUTs predict high $\Omega_{\tilde{\chi}_1^0} h^2$
- In some cases relic density can be reduced by:
 - assuming that $\tilde{\chi}_1^0$ is unstable and decays to photon + axino
 - raising GUT scale M_1 to allow for bino-wino coannihilation
 - lowering $m_{16}(1,2)$ so that neutralinos annihilate via light \tilde{q}_R exchange and neutralino-squark coannihilation
- MCMC finds a new class of solutions with m₁₆ ~ 3 TeV where neutralinos annihilate via light higgs resonance.
- Direct detection cross sections for studied benchmarks are generally $\sigma_{sc}(p\tilde{\chi}_1^0) \sim 10^{-9} \, pb$