

The first few fb⁻¹; potential for observation of physics beyond the Standard Model

CERN

on behalf of <u>ATLAS</u> and <u>CMS</u> collaborations

XLIII Rencontres de Moriond

Electroweak interactions and unified theories

R.Bellan

Outline

At LHC many models can be tested

Signatures are very similar: isolated high- p_T leptons, large missing E_T , very energetics photons and jets, high invariant mass of the final state...

- \rightarrow combination of the above signatures
- \rightarrow early data may not be enough to identify which is the model which the new signal belongs to

...But we can see if there is new physics!

Discovery potential for

- Contact interactions
- New vector bosons
- Extra dimensions
- Dynamical electroweak symmetry breaking

Quick scan of the jet final states

- Contact interaction
- Resonances in di-jet invariant mass

- Contact interactions create large rate at high p_{T} and **immediate discovery is possible**
 - error dominated by jet energy scale (~10%) in early running (<u>10 pb⁻¹</u>)
 - $\Delta E \sim 10\%$ not as big an effect as $\Lambda^+ = 3 \text{ TeV}$ for $p_T > 1 \text{ TeV}$
 - Uncertainties in the PDF and statistical errors at 10 pb⁻¹ are smaller than E scale error
- With 10 pb⁻¹, LHC can see new physics beyond the Tevatron exclusion of $\Lambda^+ < 2.7 \text{ TeV}$

- Measure rate as a function of the correct di-jet mass and search for resonances
 - Use a smooth parametrised fit or QCD prediction to model the background
- Strongly produced resonances can be seen
 - e.g. signal for a **2 TeV** excited quark (in E6 model) in **100 pb⁻¹**

High mass di-lepton final states

► Z'

- Randall-Sundrum Graviton
- ADD ED Graviton

Di-lepton final states

> ?

Signature

- pair of isolated high momentum leptons
 with large invariant mass
- Main background
 - Drell-Yan
- Experimental Issues
 - <u>electronics saturation</u> for high energetic electrons
 - <u>muon bremsstrahlung</u> (no isolation at calo level)
 - <u>alignment</u>

- - pair of isolated **high momentum** leptons with large invariant mass
- Main background
 - **Drell-Yan**
- **Experimental Issues**
 - electronics saturation for high energetic electrons
 - muon bremsstrahlung (no isolation at calo level)
 - <u>alignment</u>

R.Bellan

– <u>alignment</u>

R.Bellan

CERN

Randall - Sundrum

2 4D-branes (TeV and Planck) connected by a warped ED

 $ds^{2} = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}, \text{ with } y = r_{c} \phi$ $\Lambda_{\pi} = M_{\rho} e^{-kr_{c}\pi} \qquad kr_{c}\pi \sim 35 \implies \Lambda_{\pi} \sim \text{TeV}$

k = curvature $r_c = compactification radius$

- Only graviton can propagate in the bulk
 - resonances predicted with well separated masses

 $m_n = kx_n e^{-kr_c\pi}$, with $J_1(x_n) = 0$

 $m_1 = 3.83 c \Lambda_{\pi}$, with $c = k / M_{pl}$

- width is sensitive to the coupling $(\Gamma \propto c^2)$
- Graviton discovery in different channels will help to distinguish it with respect to other particles (e.g. Z')

CFRN

c > 0.1 disfavoured as bulk curvature becomes to large (larger than the 5-dim Planck scale)

Systematic effects included: misalignment, EW corrections, PDF

 $L \sim 30 \text{ fb}^{-1}$ is enough to cover the whole mass region

R.Bellan

n = number of ED, M_{D} = Planck mass in the 4+n dimensions

- SM particles cannot propagate in ED
- Experimental limits:
 - $M_{\rm D} > 1$ TeV from Tevatron+Lep

and $n \geq 2$

R.Bellan

2 leptons and 2 jets final states

Left-Right symmetry models

- Symmetry between Left and Right
 - $SU_{C}(3) \otimes SU_{R}(2) \otimes SU_{L}(2) \otimes U_{Y}(1)$
- Signature:
 - di-lepton + 2 jets for W_{R}

N

in LRM

- m_{w'} > 715 GeV @ 90% C.L.

R.Bellan

03 March 2008

Leptons and missing E_{T} final states

- Technicolor
- W' (Sequential Standard Model)

Technicolor

Dynamical Electroweak Symmetry Breaking

- QCD-like force which acts on technifermions at a scale of ~ 250 GeV
- Mediated by **technimesons**
 - $\pi_{_{\rm TC}}$ (s = 0), $\rho_{_{\rm TC}}$ and $\omega_{_{\rm TC}}$ (S = 1)
- No need for the Higgs boson
- Most promising channel is $\rho_{TC} \rightarrow W+Z \rightarrow 3l+\nu$
 - isolated high- p_{T} leptons + missing E_{T}
 - W and Z kinematics as signature
 - Background from VV (V=Z,W), Z bb, tt

Technicolor

Dynamical Electroweak Symmetry Breaking

- QCD-like force which acts on technifermions at a scale of ~ 250 GeV
- Mediated by **technimesons**
 - $\pi_{_{\rm TC}}$ (s = 0), $\rho_{_{\rm TC}}$ and $\omega_{_{\rm TC}}$ (S = 1)
- No need for the Higgs boson
- Most promising channel is $\rho_{TC} \rightarrow W+Z \rightarrow 3l+\nu$
 - isolated high- p_{T} leptons + missing E_{T}
 - W and Z kinematics as signature
 - Background from VV (V=Z,W), Z bb, tt

R.Bellan

W' with **same properties** as W in SM

Signature:

- single isolated mu, with high p_{T} ,
- large missing E_{T}
- Main Background:
 - W $\rightarrow \mu \nu$ / Z $\rightarrow \mu \mu$ + jets,
 - WW/Z inclusive, ttbar inclusive
- Instantaneous luminosity considered:
 - $2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - \rightarrow pile-up ~ 3.5 event per bunch crossing

W' with **same properties** as W in SM

Signature:

- single isolated mu, with high p_{T} ,
- large missing E_{T}
- Main Background:
 - W $\rightarrow \mu \nu$ / Z $\rightarrow \mu \mu$ + jets,
 - WW/Z inclusive, ttbar inclusive
- Instantaneous luminosity considered:
 - $2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - \rightarrow pile-up ~ 3.5 event per bunch crossing

 \mathcal{V}

Experimental limits: m_w > 800 GeV @ 95% C.L. from D0

R.Bellan

W' in SSM

• W' with same properties as W in SM

Signature:

- single isolated mu, with high p_{T} ,
- large missing E_{T}
- Main Background:
 - W $\rightarrow \mu \nu$ / Z $\rightarrow \mu \mu$ + jets,
 - WW/Z inclusive, ttbar inclusive
- Instantaneous luminosity considered:
 - $2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

 \rightarrow pile-up ~ 3.5 event per bunch crossing

Experimental limits:

m_{w'} > 800 GeV @ 95% C.L. from D0

R.Bellan

W' in SSM

M-jets, M-leptons, Large MET

Black Holes

Black Hole at LHC

03 March 2008

- In case of LED micro Black Holes (BH) could be produced at LHC energy scale, *in (4+n)-dimensional space-time*
 - Schwarzschild radius r_{s(4+n)}
- BH is formed is the p-p impact parameter is less than $r_{s(4+1)}$
 - from semi-classical approach $\sigma(M_{BH}) = \pi r_{s(4+\delta)}^2$
 - $M_{BH} > M_{D}$ and in case of $M_{D} \sim TeV$ then $\sigma_{BH} \sim pb$
- ► BH would have a very short life time, of the order of 10⁻¹²fs
- BH is expected to evaporate by emission of all particle types
 - source of new particles
 - possibility to probe quantum gravity in lab

Signature

High track multiplicity, hadrons:leptons = 5:1

spherical event

R.Bellan

Could be discovered with 1 fb⁻¹ if $M_p < 5$ TeV

 $\begin{array}{rll} \mathsf{BH} \rightarrow (\mathsf{q} \text{ and } \mathsf{g} : \mathsf{leptons} : \mathsf{Z} \text{ and } \mathsf{W} : \mathsf{v} \text{ and } \mathsf{G} : \mathsf{H} : \gamma) \\ \mathsf{=} (72\% : 11\% : 8\% : 6\% : 2\% : 1\%) \\ & 24 \end{array}$

Discovery Potential with Early Data

Model	Mass reach (TeV)	L (pb ⁻¹)	Early systematic
Contact Interaction	$\Lambda \sim 2.8$	10	Jet Eff., E scale
Z'			
ALRM	M ~ 1	10	
SSM	$\mathbf{M} \sim 1$	20	Alignment
LRM	M ~ 1	30	
E6, SO(10)	M ~ 1	300-100	
Excited quark	M ~ [0.7, 3.6]	100	Jet energy scale
Axigluon or Colouron	M ~ [0.7, 3.5]	100	Jet energy scale
E6 diquarks	M ~ [0.7, 4]	100	Jet energy scale
Technirho	M ~ [0.3]	100	Jet energy scale
ADD virtual G _{KK}	$M_{\rm D} \sim 4.3 \ (n = 3), \sim 3 \ (n = 6)$	100	Alignment
	$M_{\rm D} \sim 5 \ (n = 3), \sim 4 \ (n = 6)$	1000	
ADD real G _{KK}	$M_{\rm D} \sim 1.5 \ (n = 3), \sim 1 \ (n = 6)$	100	MET, Jet/ γ scale
mUED	M ~ 0.3	10	MET, Jet/ γ scale
	M ~ 0.6	1000	
$TeV^{-1}(Z_{KK})$	M _{z1} < 5	1000	
RS1			
di-jets	$M_{G} \sim [0.7, 0.8], c = 0.1$	100	Jet energy scale
di-muons	$M_{G} \sim [0.8, 2.3], c = [0.01, 0.1]$	1000	Alignment

CERN

Discovery Potential with Early Data

Model	Mass reach (TeV)	L (pb ⁻¹)	Early systematic
Contact Interaction	$\Lambda \sim 2.8$	10	Jet Eff., E scale
Z'			
ALRM	$\mathbf{M} \sim 1$	10	
SSM	$\mathbf{M} \sim 1$	20	Alignment
LRM	$\mathbf{M} \sim 1$	30	
E6, SO(10)	$\mathbf{M} \sim 1$	300-100	
Excited quark	M ~ [0.7, 3.6]	100	Jet energy scale
Axigluon or Colouron	M ~ [0.7, 3.5]	100	Jet energy scale
E6 diquarks	M ~ [0.7, 4]	100	Jet energy scale
Technirho	M ~ [0.3]	100	Jet energy scale
ADD virtual G _{кк}	$M_{\rm D} \sim 4.3 \ (n = 3), \sim 3 \ (n = 6)$	100	Alignment
	$M_{\rm D} \sim 5 \ (n = 3), \sim 4 \ (n = 6)$	1000	
ADD real G _{KK}	$M_{\rm D} \sim 1.5 \ (n = 3), \sim 1 \ (n = 6)$	100	MET, Jet/ γ scale
mUED	M ~ 0.3	10	MET, Jet/ γ scale
	M ~ 0.6	1000	
$TeV^{-1}(Z_{KK})$	M _{z1} < 5	1000	
RS1			
di-jets	$M_{G} \sim [0.7, 0.8], \ c = 0.1$	100	Jet energy scale
di-muons	$M_{G} \sim [0.8, 2.3], c = [0.01, 0.1]$	1000	Alignment

- Many models can be investigated with the first data, looking at simplest signatures
 - **10 pb**⁻¹ can be enough to see new physics
- Some questions will finally get an answer
- An exciting period for the particle physics is starting in the next few months

This talk next year:

The first few fb⁻¹; observation of new physics beyond the Standard Model

???

on behalf of the **?** and **?** collaborations

XLIV Rencontres de Moriond Electroweak interactions and unified theories

R.Bellan

...or at least...

The first few fb⁻¹; limits on new physics beyond the Standard Model

???

on behalf of the **?** and **?** collaborations

XLIV Rencontres de Moriond Electroweak interactions and unified theories

R.Bellan

hope we are not in this situation...

...and the data were always there...

R.Bellan

Back-Up

R.Bellan

New Gauge Bosons

- Predicted by many models
 - Z_{SSM} and W_{SSM} in Sequential Standard Model with same Z⁰ / W couplings as in Standard Model
 - Z_R and W_R in Left-Right symmetry model (LRM) and
 Alternative LRM (ALRM)
 - Z_{ψ} , Z_{χ} , Z_{η} models from E_{6} and SO(10) GUT groups
 - The Kaluza-Klein model (KK) from Extra Dimension
 - Little, Littlest Higgs model
- No prediction for mass scale of gauge bosons
- Measurement of mass, width, backward-forward asymmetry and cross section needed to *discriminate between models*
 - not possible with first data

- Try to solve the hierarchy problem $M_{pl}/EW \sim 10^{17}$
 - gravity force is much weaker than other gauge fields
- Several models available with signatures reachable at LHC

Discussed here:

- Randall-Sundrum (RS)
- Arkani-Hamed, Dimopoulos, Dvali Extra Dimension (ADD-ED)
- Minimal Universal Extra Dimensions (mUED)

 10^{-1}

Decay cascades with lightest KK particles being KK photon

Signature studied:

4 leptons + jets + missing E_{T}

Main background: ZZ/W + jets

SM particles can propagate in the ED

Extension of ADD model

Only 1 ED

CERN

4e

4u

🛨 2e2u

700

---- syst. incl.

800

 R^{-1} (GeV/c²)

900

mUED 4-lepton channels at CMS

500

400

600

ADD Arkani-Hamed, Dimopoulos, Dvali

Additional Large Extra Dimensions (LED)

$$M_{\rho l}^2 \sim R^{\delta} M_D^{2+\delta}$$
 if $M_D \sim 1 \text{ TeV} \rightarrow R \sim 10^{32/\delta} \cdot 10^{-4} \text{ fm}$

 $\begin{cases} \delta = 2 \rightarrow R \sim 1 \text{ mm} \\ \delta = 4 \rightarrow R \sim 100 \text{ fm} \\ \delta = 6 \rightarrow R \sim 0.02 \text{ fm} \end{cases}$

CERN

 δ = number of ED, M_D = Planck mass in the 4+ δ dimensions

- SM particles cannot propagate in ED
- Experimental limits:
 - $M_{D} > 1$ TeV from Tevatron+Lep and $\delta \ge 2$ (direct test of Newton's law + astrophysics limits)
- Experimental signatures:

n = number of ED, M_{D} = Planck mass in the 4+n dimensions

- SM particles cannot propagate in ED
- Experimental limits:
 - $M_{\rm p} > 1$ TeV from Tevatron+Lep

and $n \geq 2$

ADD: Real Graviton Emission

 $\gamma \longrightarrow q$ $\gamma = \gamma$ Signature

CERN

7	δ	M_D^{max} (TeV) LL, 30 fb ⁻¹	$ \begin{array}{c} M_D^{max} ~({\rm TeV}) \\ {\rm HL}, 100 ~{\rm fb}^{-1} \end{array} $	$ \begin{array}{c} M_D^{min} \\ ({\rm TeV}) \end{array} $
	2	7.7	9.1	~ 4
	3	6.2	7.0	~ 4.5
	4	5.2	6.0	~ 5

- high- p_{T} photon + high missing E_{T}

G

Main Background

- $Z\gamma \rightarrow \nu \nu \gamma$, di-photon production, Z + jets

- Main Background
 - $Z/W + jets \rightarrow jets + missing E_{T}$

M _D /n	n = 2	n = 3	n = 4	n = 5	n = 6
$M_D = 1.0 \; {\rm TeV}$	$0.21 \ {\rm fb}^{-1}$	$0.16 \ {\rm fb}^{-1}$	$0.14 \ {\rm fb}^{-1}$	$0.15 \ {\rm fb}^{-1}$	$0.15 \ {\rm fb}^{-1}$
$M_{\rm D} = 1.5~{\rm TeV}$	$0.83~{\rm fb}^{-1}$	$0.59~{\rm fb}^{-1}$	$0.56~{\rm fb}^{-1}$	$0.61~{\rm fb}^{-1}$	$0.59~{\rm fb}^{-1}$
$M_D = 2.0 \; \mathrm{TeV}$	$2.8 \ {\rm fb}^{-1}$	$2.1 \ {\rm fb}^{-1}$	$1.9~{\rm fb}^{-1}$	$2.1 \ {\rm fb}^{-1}$	$2.3~{\rm fb}^{-1}$
$M_D = 2.5 \text{ TeV}$	$9.9 \ {\rm fb}^{-1}$	$8.2 \ {\rm fb}^{-1}$	$8.7 \ {\rm fb}^{-1}$	$9.4 {{\rm fb}^{-1}}$	$10.9 \ {\rm fb}^{-1}$
$M_{\rm D}=3.0~{\rm TeV}$	$47.8~{\rm fb}^{-1}$	$46.4~{\rm fb}^{-1}$	$64.4~{\rm fb}^{-1}$	$100.8 \ \mathrm{fb}^{-1}$	$261.2~{\rm fb}^{-1}$
$M_{\rm D}=3.5~{\rm TeV}$	5 σ discovery not possible anymore				

R.Bellan

03 March 2008

 M_D^{max} (TeV)

HL, 100 fb^{-1}

4

The processes which involve the **fusion** of **longitudinally** polarized **vector bosons** (V=W,Z) are very <u>promising</u> channels to study the EWSB...

R.Bellan

The processes which involve the **fusion** of **longitudinally** polarized **vector bosons** (V=W,Z) are very <u>promising</u> channels to study the EWSB...

...or without

R.Bellan