The Standard model Higgs as the inflaton

F. Bezrukov M. Shaposhnikov

EPFL, Lausanne, Switzerland
Institute for Nuclear Research, Moscow, Russia

XLIIIrd Rencontres de MORIOND Electroweak Session

La Thuile, Italy 1-8 March 2008

Phys. Lett. B **659**, 703 (2008) [arXiv:0710.3755 [hep-th]]

- Inflation—virtues and problems
 - Cosmological requirements
 - "Standard" chaotic inflation
 - Problems with using the SM Higgs for inflation
- Non-minimally coupled model
 - The model
 - Conformal transformation (Einstein frame)
 - Inflation in the model
 - Radiative corrections—no danger
- Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass
- Conclusions

- Inflation—virtues and problems
 - Cosmological requirements
 - "Standard" chaotic inflation
 - Problems with using the SM Higgs for inflation
- Non-minimally coupled model
 - The model
 - Conformal transformation (Einstein frame)
 - Inflation in the model
 - Radiative corrections—no danger
- Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass
- Conclusions

Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega 1| \lesssim 10^{-59}$)
- Entropy of the Universe $S \sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P$)
- Horizon problem

Solution

Inflation.

Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega 1| \lesssim 10^{-59}$)
- Entropy of the Universe $S \sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P$)
- Horizon problem

Solution

Inflation!

"Standard" chaotic inflation

Usually required for inflation

Scalar field

- quartic coupling constant $\lambda \sim 10^{-13}$
- mass $m \sim 10^{13} \, {\rm GeV}$,

Present in the Standard Mode

The Higgs boson

- λ ~ 1
- m_H ~ 100 GeV

Even if one writes a potential that flattens at large field values:

• Radiative corrections from t, W generate $\delta V_{rad} \simeq \# h^4 \log h$

Solution: Non-minimal coupling to gravity

Scalar fields present in the SM

Usually required for inflation

Scalar field

- quartic coupling constant $\lambda \sim 10^{-13}$
- mass m ~ 10¹³ GeV.

Present in the Standard Model

The Higgs boson

- \bullet $\lambda \sim 1$
- m_H ~ 100GeV

Even if one writes a potential that flattens at large field values:

• Radiative corrections from t, W generate $\delta V_{rad} \simeq \# h^4 \log h$

Scalar fields present in the SM

Usually required for inflation

Scalar field

- quartic coupling constant $\lambda \sim 10^{-13}$
- mass $m \sim 10^{13} \, {\rm GeV}$,

Present in the Standard Model

The Higgs boson

- λ ~ 1
- m_H ~ 100GeV

Even if one writes a potential that flattens at large field values:

• Radiative corrections from t, W generate $\delta V_{rad} \simeq \# h^4 \log h$

Solution: Non-minimal coupling to gravity

- Inflation—virtues and problems
 - Cosmological requirements
 - "Standard" chaotic inflation
 - Problems with using the SM Higgs for inflation
- Non-minimally coupled model
 - The model
 - Conformal transformation (Einstein frame)
 - Inflation in the model
 - Radiative corrections—no danger
- Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass
- Conclusions

Non-minimally coupled scalar field

Quite an old idea

Add $\phi^2 R$ term to/instead of the usual $M_P R$ term in the gravitational action

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

$$S_{J}=\int d^{4}x\sqrt{-g}\Bigg\{-\frac{M^{2}+\xi\,h^{2}}{2}R+g_{\mu\nu}\frac{\partial^{\mu}h\partial^{\nu}h}{2}-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2}\Bigg\}$$

- h is the Higgs field
- $M \gg v \sqrt{\xi}$ so $M \simeq M_P = \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \, \text{GeV}$

Non-minimally coupled scalar field

Quite an old idea

Add $\phi^2 R$ term to/instead of the usual $M_P R$ term in the gravitational action

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

$$S_{J}=\int d^{4}x\sqrt{-g}\Bigg\{-\frac{M^{2}+\xi\,h^{2}}{2}R+g_{\mu\nu}\frac{\partial^{\mu}h\partial^{\nu}h}{2}-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2}\Bigg\}$$

- h is the Higgs field
- $M \gg v \sqrt{\xi}$ so $M \simeq M_P = \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \, \mathrm{GeV}$

Conformal transformation

It is possible to get rid of the non-minimal coupling by the conformal transformation (field redefinition)

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} \; , \quad \Omega^2 = 1 + rac{\xi \, h^2}{M_P^2}$$

and also redefinition of the Higgs field to make canonical kinetic term

$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}} \quad \Longrightarrow \left\{ \begin{array}{l} h \simeq \chi & \text{for } h < M_P / \xi \\ h \simeq \frac{M_P}{\sqrt{\chi}} \exp\left(\frac{\chi}{\sqrt{6}M_P}\right) & \text{for } h > M_P / \sqrt{\xi} \end{array} \right.$$

Resulting action (Einstein frame action)

$$S_E = \int d^4 x \sqrt{-\hat{g}} \Biggl\{ -\frac{M_P^2}{2} \hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - \frac{1}{\Omega(\chi)^4} \frac{\lambda}{4} \left(h(\chi)^2 - v^2 \right)^2 \Biggr\} \label{eq:SE}$$

Moriond'08 9 / 20

Inflationary potential

 $U(\chi) \simeq rac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-rac{2\chi}{\sqrt{6}M_P}
ight)
ight)$ For $\chi \gtrsim M_P$:

Slow roll stage

$$arepsilon = rac{M_P^2}{2} \left(rac{dU/d\chi}{U}
ight)^2 \simeq rac{4}{3} \exp\left(-rac{4\chi}{\sqrt{6}M_P}
ight)$$
 $\eta = M_P^2 rac{d^2U/d\chi^2}{U} \simeq -rac{4}{3} \exp\left(-rac{2\chi}{\sqrt{6}M_P}
ight)$

Slow roll ends at $\chi_{\rm end} \simeq M_P$

Number of e-folds of inflation at the moment h_N is $N \simeq \frac{6}{8} \frac{h_N^2 - h_{\rm end}^2}{M_P^2/\xi}$

$$\chi_{60} \simeq 5 M_P$$

COBE normalization $U/\varepsilon = (0.027 M_P)^4$ gives

$$\xi \simeq \sqrt{\frac{\lambda}{3}} \frac{\textit{N}_{\text{COBE}}}{0.027^2} \simeq 49000 \sqrt{\lambda} = 49000 \frac{\textit{m}_{\textit{H}}}{\sqrt{2}\textit{v}}$$

Connection of ξ and the Higgs mass!

After inflation—reheating and back to the SM

For $\chi \lesssim M_P/\xi$: the Standard Model.

Instant reheating: $T_{\rm reh} \sim 10^{13} \, {\rm GeV}$ (careful analysis gives even larger)

12/20

Radiative corrections

Could be a problem

In the ordinary situation effective potential is generated

$$\Delta U(h) \sim \frac{m^4(h)}{64\pi^2} \log \frac{m^2(h)}{\mu^2}$$

standard Yukawa interaction $m = y \cdot h$

$$\Delta U \propto -y^4 h^4 \log \frac{h^2}{\mu^2}$$

Spoils flatness of the potential (for top quark $y \sim 1$!)

Radiative corrections

Could be a problem

In the ordinary situation effective potential is generated

$$\Delta U(h) \sim \frac{m^4(h)}{64\pi^2} \log \frac{m^2(h)}{\mu^2} \qquad - \sim \sim$$

standard Yukawa interaction $m = y \cdot h$

$$\Delta U \propto -y^4 h^4 \log \frac{h^2}{\mu^2}$$

Spoils flatness of the potential (for top quark $y \sim 1$!)

Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

$$\Delta U(\chi) \sim \frac{m^4(\chi)}{64\pi^2} \log \frac{m^2(\chi)}{\mu^2}$$

But the interactions are suppressed now!

$$m_{\psi,\mathcal{A}}(\chi) = \frac{m(v)}{v} \frac{h(\chi)}{\Omega(\chi)} \overset{\chi o \infty}{\longrightarrow} \mathsf{const}$$

(where $\Omega(\chi) \propto h(\chi)$ for large χ)

$$\implies$$
 $\Delta U(\chi) \sim \text{const}$

- Inflation—virtues and problems
 - Cosmological requirements
 - "Standard" chaotic inflation
 - Problems with using the SM Higgs for inflation
- Non-minimally coupled model
 - The model
 - Conformal transformation (Einstein frame)
 - Inflation in the mode
 - Radiative corrections—no danger
- Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass
- Conclusions

CMB parameters—spectrum and tensor modes

$$n = 1 - 6\varepsilon + 2\eta \simeq 1 - \frac{8(4N+9)}{(4N+3)^2} \simeq 0.97$$

$$r = 16\varepsilon \simeq \frac{192}{(4N+3)^2} \simeq 0.0033$$

Expected window for the Higgs mass

Standard Model should remain applicable up to

$$M_P/\xi \simeq 10^{14}\,\mathrm{GeV}$$

We expect the Higgs mass

$$130\,\mathrm{GeV} < M_H < 190\,\mathrm{GeV}$$

Discovery of the Higgs with different mass will close the model!

Yu.Pirogov O.Zenin'98

- Inflation—virtues and problems
 - Cosmological requirements
 - "Standard" chaotic inflation
 - Problems with using the SM Higgs for inflation
- Non-minimally coupled mode
 - The model
 - Conformal transformation (Einstein frame)
 - Inflation in the model
 - Radiative corrections—no danger
- Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass
- Conclusions

Conclusions

- Adding non-minimal coupling $\xi H^{\dagger}HR$ of the Higgs field to the gravity makes inflation possible without introduction of new fields
 - ▶ The new parameter of the model, non-minimal coupling ξ , relates the normalization of CMB fluctuations and the Higgs mass $\xi \simeq 49000 m_H / \sqrt{2}v$
- Predicted for CMB
 - ► $n_s \simeq 0.97$
 - ► $r \simeq 0.0033$
- Expected for LHC
 - ► Higgs mass 130 GeV < M_H < 190 GeV
 - ▶ No new physics up to at least $M_P/\xi \sim 10^{14}\,\mathrm{GeV}$

Appendix Outline

Field redefinition

$$h \ll M_P/\xi$$

$$h \simeq \chi$$

$$\Omega \simeq 1$$

 $\Omega \simeq 1$

$$V = \frac{\lambda}{4} (h^2 - v^2)^2$$

$$M_P/\xi \ll h \ll M_P/\sqrt{\xi}$$

$$\chi \simeq \sqrt{3/2} \, \xi \, h^2/M_P$$

$$U(\chi) \simeq rac{\lambda M_P^2}{6\xi^2} \chi^2$$

$$h\gg M_P/\sqrt{\xi}$$

$$h \simeq rac{M_P}{\sqrt{\xi}} \exp\left(rac{\chi}{\sqrt{6}M_P}
ight) \quad \Omega \simeq {}^h \sqrt{\xi}/{}_{M_P}$$

$$h \simeq \frac{M_P}{\sqrt{\xi}} \exp\left(\frac{\chi}{\sqrt{6}M_P}\right) \quad \Omega \simeq \frac{h\sqrt{\xi}}{M_P} \quad U(\chi) \simeq \frac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right)\right)^{-2}$$

