Electroweak Symmetry Breaking in

Warped Extra Dimensions

Gustavo Burdman

University of São Paulo

Rencontres de Moriond Electroweak, La Thuile, March 1-8 2008

Outline

- EWSB and New Strong Dynamics at the TeV
- One extra-dimension in AdS and the hierarchy problem(s)
- AdS models of EWSB and fermion masses
 - Higgsless
 - Gauge-Higgs unification
 - Fourth-generation condensation
- Conclusions/Outlook

EWSB and Strong Dynamics

The hierarchy problem:

- Why is $M_{\rm EW} \ll M_{\rm Planck}$?
- What's the (dynamical) origin of EWSB ?
- Suggests new physics at the TeV scale.

A possible solution: New strong dynamics at the TeV scale.

- EWS broken by critically strong new interactions: e.g. *Techni-color*.
- Analogy with QCD: Scale of EWSB is exponentially separated from M_{Planck} by running of coupling.
- No Higgs boson, or composite Higgs (e.g. Little Higgs).

Strong Dynamics at the TeV Scale

Problems:

- Flavor: requires many different flavor scales (ETC), walking, Top-Color for m_t
- Electroweak precision bounds: strong dynamics result in a large S parameter

$$S \simeq O(1) \, \frac{N}{\pi}$$

Strong Dynamics from AdS in 5D

AdS/CFT Correspondence:

- AdS in 5D \leftrightarrow CFT in 4D (Maldacena)
- (Quasi-)Conformal strongly coupled in 4D (large N) dual to weakly coupled in 5D
- Build models of strongly coupled sectors using weakly coupled AdS₅

\mathbf{AdS}_5 and the Hierarchy Problem

Non-trivial metric induces small energy scale from Planck scale(L. Randall, R. Sundrum)

Geometry of extra dimension generates hierarchy exponentially.

 $\Lambda_{\rm TeV} \sim M_{\rm Planck} \, e^{-k \, L}$

k the AdS curvature

Natural EWSB

If the Higgs is localized at (or near) the TeV brane $(y = \pi R)$

$$S_H = \int d^4x \int_0^{\pi R} dy \sqrt{-g} \,\delta(y - \pi R) \left[g_{\mu\nu} \partial^{\mu} H^{\dagger} \partial^{\nu} H - \lambda \left(|H|^2 - v_0^2 \right)^2 \right]$$

Even if $v_0 \simeq M_{\text{Planck}}$, the v.e.v. (and mass) of the physical Higgs is

$$v = e^{-k\pi R} v_0$$

To solve the hierarchy problem need Higgs localization.

Bulk WED Model Building

- In original proposal, only gravity propagates in 5D bulk.
- Allowing gauge fields and matter to propagate in the bulk models of EWSB, flavor, GUTs, etc.
- Bulk Randall-Sundrum models:
 - Choose the gauge symmetry in the bulk: enlarge the electroweak SM gauge group to avoid large T (Agashe, Delgado, May, Sundrum):

 $SU(2)_L \times SU(2)_R \times U(1)_X$

Plus an extension of the custodial symmetry ($L \leftrightarrow R$) to protect $Z \rightarrow b\overline{b}$ (Agashe, Contino, Da Rold, Pomarol)

• Write theory in the bulk and expand in Kaluza-Klein modes KK gauge bosons start at O(1) TeV

Flavor in Warped Extra Dimensions

Fermion mass hierarchy from localization:

9 Fermion *bulk mass* \Rightarrow zero-mode localization:

$$M_f = c k, \qquad c \sim O(1)$$

The zero-mode fermion wave-function is

$$F_{\rm ZM}^L(y) = \frac{1}{\sqrt{2\pi R}} f_0^L(0) e^{(\frac{1}{2} - c_L) ky}$$

If $c_L > 1/2 \Rightarrow$ fermion localized near y = 0, Planck brane. If $c_L < 1/2 \Rightarrow$ fermion localized near $y = \pi R$, TeV brane.

Flavor Models in WED

• O(1) flavor breaking in bulk can generate fermion mass hierarchy:

Fermions localized toward the TeV brane can have larger Yukawas, Those localized toward the Planck brane have highly suppressed ones.

Electroweak Symmetry Breaking and WED

Several possibilities for model building:

Higgs or Higgsless (BC breaking)

- We have a theory of flavor: O(1) parameters (the $c'_i s$) are responsible for generating all fermion masses.
- Fermion Localization is responsible for the large separation of scales between light fermion masses (exponentially less overlapped with TeV scale), and heavier fermions (i.e. top) localized around TeV scale.

Warped Extra Dimensions - Signals

- Narrow states \rightarrow KK modes: Spin 2 (graviton), plus all other SM fields at the LHC
 - New Gauge bosons
 - New Fermions

 \Rightarrow Evidence for the RS bulk set up

But, what are the signals for the Flavor Theory ? Localization of 3rd generation near TeV brane ⇒ flavor violation, e.g.:

 \Rightarrow Anomalous single top at high invariance mass (Aquino, G.B., Eboli) Also in low energy flavor physics.

Higgsless EWSB in AdS₅

Break EWS by Boundary Conditions (Csaki, Grojean, Pilo, Terning)

- BCs on branes ⇒ $SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow U(1)_{EM}$
 - TeV brane: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$: Preserves custodial symmetry.
 - Planck brane: $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$: Allows fermion mass terms on TeV brane.
- Z and W are KK modes. $ho \sim 1$
- Fermion masses:
 - vector-like mass terms on TeV brane.
 - Isospin symmetry broken on Planck brane.
 - E.g.: top quark is TeV-brane localized \Rightarrow larger mass (larger overlap with chiral-symmetry breaking).

Higgsless EWSB in AdS₅

EWPC:

- S parameter is large
- S can be made small by de-localizing fermions

Higgsless EWSB in AdS₅

Signals:

- Unitarization of WW, WZ, \ldots scattering done by KK resonances
- Couplings of $V^{(n)}$'s to W^{\pm} and Z must satisfy sum rules (to cancel E^2 , E^4 behavior). E.g. for $WW \rightarrow WW$:

$$g_{WWWW} = g_{WWZ}^2 + g_{WW\gamma}^2 + \sum_n (g_{WWV^{(n)}})^2$$
$$= \frac{3}{4M_W^2} \left[g_{WWZ}^2 M_Z^2 + \sum_n (g_{WWV^{(n)}})^2 M_n^2 \right]$$

• KK gauge bosons \Rightarrow narrow resonances, lighter ($M_{V^{(1)}} \leq 1$ TeV) than in Techni-color or other strongly coupled models.

If there is a Higgs: what is its dynamical origin ? Or why is it localized towards the TeV brane ?

- Gauge field in 5D has scalar A_5
- **J** To extract H from A_5 need to enlarge SM gauge symmetry.

E.g. $SU(3) \rightarrow SU(2) \times U(1)$ by boundary conditions:

$$A_{\mu}: \begin{pmatrix} (+,+) & (+,+) & (-,-) \\ (+,+) & (+,+) & (-,-) \\ \hline (-,-) & (-,-) & (+,+) \\ \end{pmatrix}$$
$$A_{5}: \begin{pmatrix} (-,-) & (-,-) & (+,+) \\ (-,-) & (-,-) & (+,+) \\ \hline (+,+) & (+,+) & (-,-) \end{pmatrix}$$

 \Rightarrow Higgs doublet from $A_5 = A_5^a t^a$

To build realistic models of EWSB from AdS_5 :

■ Isospin symmetry: need $SO(4) \times U(1)_X$ in bulk $\Rightarrow SO(5) \times U(1)_X \rightarrow SO(4) \times U(1)_X$ by BCs

(Agashe, Contino, Pomarol)

- Higgs is 4 of SO(4): 4 d.o.f. \leftrightarrow complex $SU(2)_L$ doublet
- Gauge bosons and fermions in complete SO(5) multiplets
- Implementing additional symmetry to protect $Z \rightarrow b\bar{b}$ \Rightarrow spectrum of KK fermions, lighter than KK gauge bosons.
 (Contino, Da Rold, Pomarol)

E.g.: Fermions can be

 $\begin{aligned} \mathbf{5_{2/3}} &= (\mathbf{2},\mathbf{2})_{2/3} \oplus (\mathbf{1},\mathbf{1})_{2/3} \\ & \text{or} \\ \mathbf{10_{2/3}} &= (\mathbf{2},\mathbf{2})_{2/3} \oplus (\mathbf{1},\mathbf{3})_{2/3} \oplus (\mathbf{3},\mathbf{1})_{2/3} \end{aligned}$

to satisfy custodial + $L \leftrightarrow R$ symmetry.

BCs ⇒ masses of KK fermions tend to be light (because top is heavy)

Signals:

- Rich gauge boson spectrum, at few TeV
- Light KK fermion spectrum: could be as light as 500 GeV
- Very distinctive signals:
 - E.g. b-type KK fermion $\rightarrow tW$ \Rightarrow 4W's + 2b signals (Dennis, Servant, Unel, Tseng)
 - Enhanced t¹ pair production through KK gluon (Carena, Medina, Panes, Shah, Wagner)

EWSB from Fourth-Generation in AdS₅

Top-condensation models (Nambu; Bardeen, Hill, Lindner): EWS broken by $\langle \bar{t}t \rangle \neq 0$

- Top quark is too light: $m_t \sim 600 \text{ GeV}$ if $\Lambda \sim O(1)$ TeV.
 Or $\Lambda \sim 10^{15}$ GeV if $m_t \sim 200$ GeV.
- ▶ ⇒ Heavy fourth generation $M_4 \sim 600$ GeV.
- Problems:
 - All of 4th Gen must condense, but What's the underlying interaction ?
 - Fermion masses ?

EWSB from Fourth-Generation in AdS₅

- Need 4th-generation strongly coupled to new interaction
- If 4th-generation propagates in AdS₅ bulk and is highly localized on the TeV brane (G.B., Da Rold) 4th-generation quarks are strongly coupled to KK gluon:

EWSB from Fourth-Generation in AdS₅

If
$$g_U > g_U^{\text{crit.}}$$
, $\Rightarrow \langle \bar{U}_L U_R \rangle \neq 0$

 \Rightarrow Solution to the gap equation:

This implies

- Electroweak Symmetry Breaking
- **)** Dynamical m_U

We can also write an effective theory at low energy for the Higgs.

Predictions for m_U , m_H

For
$$M_{KK} = 3$$
 TeV, we get

 $m_U \simeq 600 \text{ GeV}$ $m_h \simeq 900 \text{ GeV}$

- Higgs naturally TeV-brane localized
- Fermion masses (other than m_U):
 From bulk Higher Dimensional Ops.
- Non-condensing 4th-generation fermions could be as light as 300 GeV!

Phenomenology

4th generation strongly coupled to KK gauge bosons: Decays of KK gauge bosons possibly dominated by 4th generation. E.g.

$$\frac{Br(G^{(1)} \to \overline{U}U)}{Br(G^{(1)} \to \overline{t}t)} \sim (5-10)$$

- Need to disentangle from potentially light KK fermions.
- KK gluon tends to be very broad: from 30% width on!! Need to extract this signal at high invariant mass, or look for the electroweak KK gauge bosons

Conclusions

- We are building strongly coupled theories of the TeV scale using AdS₅
- RS solves the hierarchy problem. RS bulk models also solve the fermion mass hierarchy problem
- Choosing a dynamical model for the Higgs:
 - Higgsless,
 - Gauge-Higgs unification,
 - 4th-generation condensation,

affects the phenomenology at the LHC.

If evidence of a strongly coupled TeV sector should appear at the LHC, model building in AdS₅ should be a helpful tool