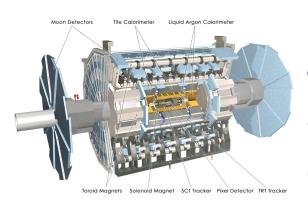
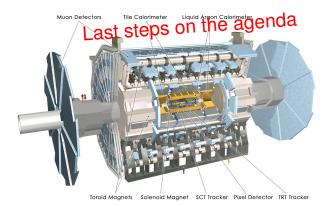
Commissioning of ATLAS and early SM measurements with leptons in ATLAS and CMS

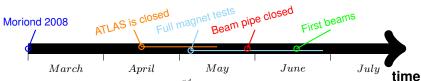
Mathieu Plamondon¹ on behalf of ATLAS and CMS collaborations


¹ LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, France

 IVIII^{rd} Moriond Conference - EW Session

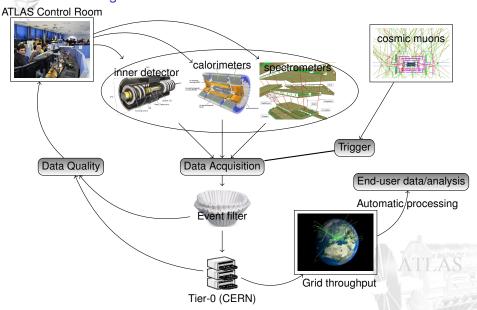
ATLAS commissioning before the collisions...




- ATLAS Commissioning
 - Detector Status
 - Integration
 - Results from commissioning
- Early physics with leptons
 - Calibration
 - Early measurements
 - Early discoveries
- Conclusions
- How ready are the components a few months before start-up?
- What have we learned from the commissioning?

Detector Status

Detector Status



02-MAR-2008

Detector Status

Integration

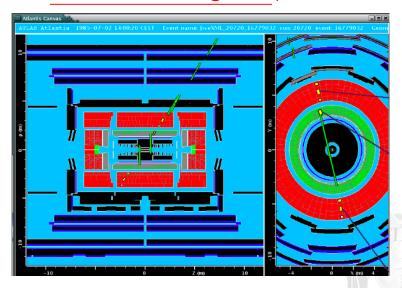
Integration

Monitoring tools developed

Load tests with cosmics (200MB/s vs 1GB/s at LHC)

Average throughput (MB/s) from Tier-0 to Tiers-1

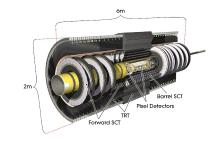
Full Dress Rehearsal (FDR): stress test of the full data processing and analysis chain

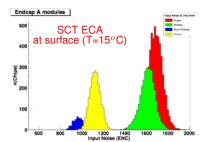


analysis

pro essing

Results from cosmics

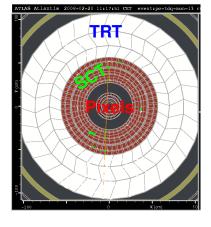

ATLAS recording data(from cosmics)



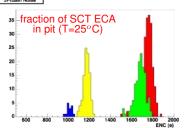
Inner detectors

- do debugging, identify non-working channels
- noise levels are not degraded once in the pit (compared to conditions at the surface)
- non-pointing cosmics are useful in alignment studies

Sub-detector	# channels (non-working)
Pixels	80×10 ⁶ (0.3%)
Silicon Strips (SCT)	6×10 ⁶ (0.3%)
Transition Radiation (TRT)	$3.5 \times 10^5 (1.0\%)$


Global SCT-TRT barrel misalignments		
Displacement Survey Cosmics		
$\Delta x(mm)$	$-0.300 \pm .008$	$-0.290 \pm .007$
Δ rot-y(mrad)	$+0.221 \pm .006$	$+0.285 \pm .021$

comparison between survey measurements and results from reconstructed *cosmics* tracks (after alignment)


Inner detectors

- do debugging, identify non-working channels
- noise levels are not degraded once in the pit (compared to conditions at the surface)
- non-pointing cosmics are useful in alignment studies

Sub-detector	# channels (non-working)
=	
Pixels	80×10 ⁶ (0.3%)
Silicon Strips (SCT)	6×10 ⁶ (0.3%)
Transition Radiation (TRT)	3.5×10 ⁵ (1.0%)

3PtGain Noise

Global SCT-TRT barrel misalignments		
Displacement Survey Cosmics		
$\Delta x(mm)$	$-0.300 \pm .008$	$-0.290 \pm .007$
Δ rot-y(mrad)	$+0.221 \pm .006$	$+0.285 \pm .021$

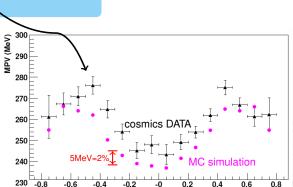
comparison between survey measurements and results from reconstructed *cosmics* tracks (after alignment)

Calorimeters

- have operated under stable conditions (high voltage,temperature) for more than one year
 - $\bullet\,$ e.g. liquid argon kept at 88K with an rms(T) $\lesssim\!10\text{mK}$
- the good understanding of the detectors illustrated by cosmics, e.g.
 - signals in the LAr calorimeter are well
 described/predicted

 \sim 13GeV pulse from cosmics

• EM energy scale and uniformity along η verified with cosmics at the 2% level


0.04

0.02

-0.02

-0.04

Time (ns)

LAr electromagnetic barrel 170000(0.04%)

5600(0.09%)

LAr hadronic end-cap (HEC)

LAr electromagnetic

end-cap (EMEC) -

1400

1200 1000

800

600

400

200

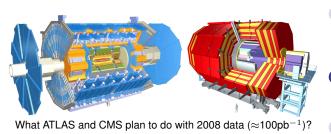
-200

0

3500(0.2%)

Tile extended barrel

9800(0.8%)


Nchannels(non-working)

sagitta (mm)

100

100

And the first collisions...

- ATLAS Commissioning
 - Detector Status
- Integration
- Results from
 commissioning
- Early physics with leptons
 - Calibration
 - Early measurements
 - Early discoveries
 - Conclusions

At start-up

	Performance @ Start-up	Ultimate goal	Physics goals	Physics signals tools
EM energy uniformity	<2%(ATLAS) <4%(CMS)	0.7%(ATLAS) 0.5%(CMS)	$H \rightarrow \gamma \gamma$	isolated e, Z \rightarrow ee, ϕ -symmetry
Electron energy scale	~ 2%	0.02%	W mass	Z→ee
Inner detector alignment	50-100μm(ATLAS)	<10µm	b-tagging	isolated μ ,Z \rightarrow μ μ ,generic tracks
Muon system alignment	$<$ 200 μ m(ATLAS)	$30 \mu \mathrm{m}$	$Z \rightarrow \mu \mu$	$Z \rightarrow \mu \mu$
Muon momentum scale	∼1%	0.02%	W mass	$Z \rightarrow \mu \mu$

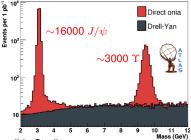
- Commission and calibrate the detector in situ using well-known physics samples ("standard candles")
- Rediscover and measure SM physics at $\sqrt{s}=14~TeV$
- Validate and Tune MC. Prepare the road to new physics.
- Early discoveries?

At start-up

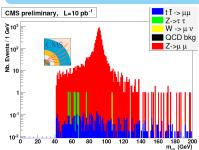
	Performance @ Start-up	Ultimate goal	Physics goals	Physics signals tools
EM energy uniformity	<2%(ATLAS) <4%(CMS)	0.7%(ATLAS) 0.5%(CMS)	$H \rightarrow \gamma \gamma$	isolated e, $Z \rightarrow$ ee, ϕ -symmetry
Electron energy scale	~ 2%	0.02%	W mass	Z→ee
Inner detector alignment	50-100μm(ATLAS)	<10µm	b-tagging	isolated μ ,Z \rightarrow $\mu\mu$,generic tracks
Muon system alignment	$<$ 200 μ m(ATLAS)	$30 \mu \mathrm{m}$	$Z \rightarrow \mu \mu$	$Z \rightarrow \mu \mu$
Muon momentum scale	∼1%	0.02%	W mass	$Z \rightarrow \mu \mu$

- Commission and calibrate the detector in situ using well-known physics samples ("standard candles")
- Rediscover and measure SM physics at $\sqrt{s}=14~TeV$
- Validate and Tune MC. Prepare the road to new physics.
- Early discoveries?

channels	events to tape for	total stat.
(examples)	100pb ⁻¹ @ LHC	@ Tevatron
$W \rightarrow \mu \nu$	~ 10 ⁶	$\sim 10^{6} - 10^{7}$
$Z \rightarrow \mu \mu$	~ 10 ⁵	\sim 10 ⁵ -10 ⁶
$t\bar{t} \rightarrow \mu \nu + X$	∼10 ⁵	$\sim 10^{3} - 10^{4}$

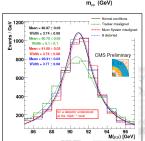

Illustrative trigger menu at $\mathcal{L} = 10^{31} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ (ATLAS):

	990	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>,</i> -
Signature Examples of physics coverage		Rates(Hz)	
minimum bias	Prescaled trigger item		10
e10,2e5	b,c→e,W,Z,Drell-Yan,tt,J/ψ,Υ	electrons	~27
γ 20,2 γ 15	Direct photon, photon pairs, γ -jet balance	photons	~7
μ 10,2 μ 4	μ 10,2 μ 4 b,W,Z,Drell-Yan,tt,J/ ψ , Υ muons \sim 2		~22
		~13	
$ au$ 20i+ $^{e10}_{\mu6}$ Z $ ightarrow au au$ taus		4	
τ20i+xE30	W,tt	tau+∉ _T	~10
Prescaled,calibration,monitoring triggers		∼17	
Total HLT rate		~100	

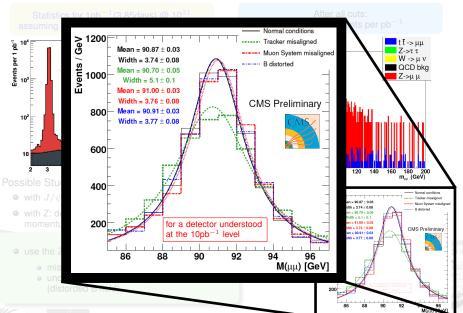

Leptons play an important role for early physics

First peaks: $(J/\psi, \Upsilon, Z) \rightarrow \mu\mu$

Statistics for 1pb⁻¹(3.85days) @ 10³¹ assuming a 30% detector+machine efficiency

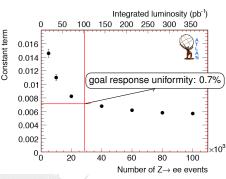


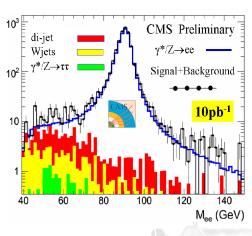
After all cuts: \sim 600 Z $\rightarrow \mu\mu$ events per pb $^{-1}$



Possible Studies:

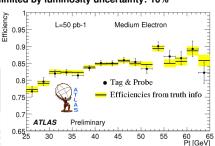
- with J/ψ : sanity checks, tracker alignment and momentum scale
- with Z: detector efficiencies, trigger performance, detector momentum scale, alignment
- use the Z boson mass candle to assess:
 - misalignments of tracker and spectrometer
 - uncertainties on the magnetic field (distorded B field)




First peaks: $(J/\psi, \Upsilon, Z) \rightarrow \mu\mu$

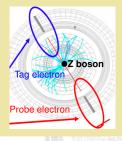
Z→ee calibration and energy scale

- Z will be seen very early, even with simple cuts
- robust analysis are considered at the beginning (e.g. no tracker needed, in the barrel region only)
- Z—ee is a key tool for the commissioning of electron reconstruction and ID



- use Z-mass constraint to correct residual long-range non-uniformities
- in ATLAS, intercalibrate relatively large regions which are locally uniform $\Rightarrow \sim 30000 \text{ Z}$ —ee events enough to achieve the goal response uniformity of $\sim 0.7\%$
- in CMS, the local cristal-to-cristal response is also non-uniform
 ⇒ statistics of 10fb⁻¹ required to perform a similar intercalibration

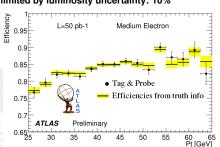
Z and W cross-sections


for $100 \mathrm{pb}^{-1}$	
$\frac{\Delta\sigma}{\sigma}(pp\to Z/\gamma^* + X\to \mu\mu)$	
ATLAS	$0.004(stat) \pm 0.008(sys) \pm 0.02(th) \pm 0.1(lumi)$
CMS	$0.004(stat) \pm 0.011(sys) \pm 0.02(th) \pm 0.1(lumi)$

- not statistically limited
- systematics at the 1% level (efficiencies,background,...)
- Tag&Probe method used to determine efficiencies
 - single lepton trigger to allow unbiased probes
 - agrees well with truth matching (<1% in average)
- theoretical error at 2%, rel. acceptance determination and PDFs
- limited by luminosity uncertainty: 10%

Tag&Probe method

- well identified electron on one side: tag electron
- simple object on the other side (track or EM cluster):
 probe electron
- determine the efficiency with the number of events in the mass window:
 M_{inv}=M_Z±20GeV

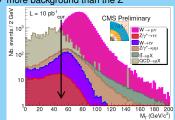


Z and W cross-sections

for $100 pb^{-1}$

ιοι τουρο		
	$\frac{\Delta\sigma}{\sigma}(pp \to Z/\gamma^* + X \to \mu\mu)$	
ATLAS		
ATLAS	$0.004(stat) \pm 0.008(sys) \pm 0.02(th) \pm 0.1(lumi)$	
CMS	$0.004(stat) \pm 0.011(sys) \pm 0.02(th) \pm 0.1(lumi)$	

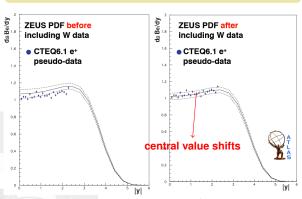
- not statistically limited
- systematics at the 1% level (efficiencies,background,...)
- Tag&Probe method used to determine efficiencies
 - single lepton trigger to allow unbiased probes
- agrees well with truth matching (<1% in average)
 theoretical error at 2%, rel. acceptance determination and
- limited by luminosity uncertainty: 10%



Tag&Probe method

- well identified electron on one side: tag electron
- simple object on the other side (track or EM cluster):
 probe electron
- determine the efficiency with the number of events

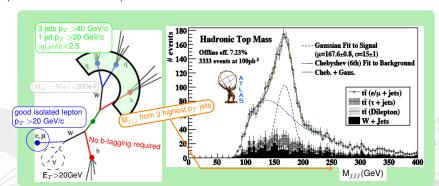
$W \to \ell \nu$


- use the knowledge acquired with the Z
- more background than the Z

- ⇒ evaluate bkg by data-driven techniques
- higher systematic errors, e.g. $\frac{\Delta \sigma}{\sigma}(W \to e\nu)$ with 50pb⁻¹ (ATLAS) = ± 0.002 (stat) ± 0.05 (sys) ± 0.1 (lumi)

Constrain PDFs with $W{\rightarrow}\ell\nu$

- W production at LHC over $|y| < 2.5 \Rightarrow 10^{-4} < x_{1.2} < 0.1$
- low-x region dominated by $q \rightarrow q\bar{q}$: sea-sea parton interactions
- low-x uncertainties on present PDF are large (4-8%)
- possibility to constrain PDFs by adding LHC data in global fits
- ullet early measurements of e^\pm angular distributions at LHC can provide discrimination between different PDF **if experimental precision is** $\lesssim 5\%$

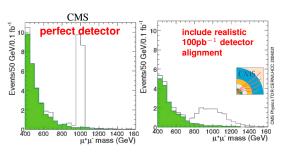


Example:

- simulate 10⁶ W→ ev events (an equivalent of 150pb⁻¹ of data) generated with CTEQ6.1 PDF and detector simulation
- introduce 4% systematic errors by hand (statistical error negligible)
- these pseudo-data are included in the global ZEUS PDF fit
- error on low-x gluon shape parameter $\lambda \left[xg(x) \sim x^{-\lambda} \right]$ reduced by 41%
- systematics (e.g. e^{\pm} acceptance vs η) are already controlled to a few percents with Z \rightarrow ee

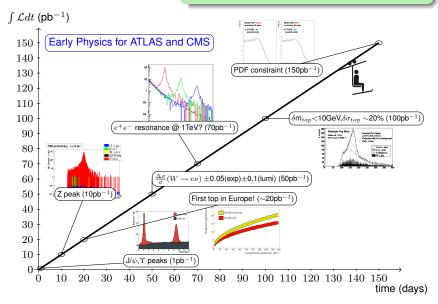

Leptons for early top

- easiest channel will be lepton + jets (tt→bℓν bjj)
- main backgrounds: W+jets, tt combinatorics and QCD
- assume b-tagging will not be available yet
- signal can be quickly seen (with ~10pb⁻¹), even with limited detector performance and simple analysis
- with 100pb⁻¹, measure σ_{tt} to ~20% and m_{ton} to <10GeV
- excellent sample for: light jet calibration, b-jet efficiency determination, general detector performance (see Tim Christiansen's talk)



Early discoveries with leptons?

Mass (TeV)	$\int \mathcal{L} dt$ for discovery
1	\sim 70 pb $^{-1}$
1.5	\sim 300 pb $^{-1}$
2	$\sim 1.5 \; {\rm fb}^{-1}$



- early search of a narrow resonance decaying to e⁺e⁻
- with 100pb⁻¹, signal large enough for discovery for up to M∼1TeV
- ultimate calorimeter performance not needed
- would require much more data to distinguish a Z' from a graviton for instance
- dimuons? Significantly worse resolution than for electrons <u>but</u> generally lower instrumental background may make dimuons a discovery channel along with dielectrons

Conclusions

ATLAS is getting ready to collect data by recording already cosmic ray particles and is eagerly awaiting the first LHC collisions next summer...

