

Measurement of the UHECRs flux and composition with Pierre Auger Observatory

Ioana C. Mariş for the Pierre Auger Collaboration

Outline

- Ultra high energy cosmic rays
- Pierre Auger Observatory
- Energy spectrum (calibration, combined spectrum)
- Composition

XLIII nd Rencontres de Moriond- EW, 2008

I. C. Maris for the Pierre Auger Collaboration

3

XLIII nd Rencontres de Moriond- EW, 2008

3

I. C. Maris for the Pierre Auger Collaboration

I. C. Mariş for the Pierre Auger Collaboration 3

I. C. Maris for the Pierre Auger Collaboration 3

I. C. Maris for the Pierre Auger Collaboration

Introduction: Measurement Techniques

Surface detectors

Surface detector(SD)

- acceptance geometric
- energy scale from air shower simulations
- duty cycle $\approx 100\%$

Fluorescence detector(FD)

- energies from longitudinal energy deposit, nearly calorimetric
- acceptance from detector and atmosphere simulation
- duty cycle $\approx 10\%$

Pierre Auger Observatory: acceptance and energy from data !

Pierre Auger Observatory: hybrid detector

5

Surface detector (SD)

Surface detector (SD)

5

Fluorescence detector (FD)

XLIII nd Rencontres de Moriond- EW, 2008

I. C. Maris for the Pierre Auger Collaboration

Pierre Auger Observatory: event example

Pierre Auger Observatory: event example

Pierre Auger Observatory: event example

S(1000 m) to Energy

From 'Golden Hybrids' (FD+SD)

S(1000 m)- Attenuation in the atmosphere

inclined S(1000m) < vertical S(1000m)

Zenith angle correction: $S(1000m) \Rightarrow S_{38}$

$$S_{38}(1000 \text{ m}) = S(1000 \text{ m})/f(\theta)$$

$$f(\theta) = 1 + \frac{a}{a} \cdot x + \frac{b}{b} \cdot x^2, x = \cos^2 \theta - \cos^2 38^{\circ}$$

correct all shower sizes to the same angle 38°

Energy Calibration

Energy Scale Systematics

Absolute Fluorescence Yield 14%

Pressure dependence of Fluorescence Yield 1% Humidity dependence of Fluorescence Yield 1% Temperature dependence of Fluorescence Yield 5%

FD absolute calibration 11%

FD wavelength dependence response 3% Rayleigh scattering in atmosphere 1% Wavelength dependence of aerosol scattering 1%

FD reconstruction method 10% Invisible energy 5%

Total: 22%

experimental uncertainties to be improved

XLIII nd Rencontres de Moriond- EW, 2008

I. C. Mariş for the Pierre Auger Collaboration 11

Vertical Energy Spectrum

Horizontal and Hybrid Energy Spectra

Auger Energy Spectrum

Auger Energy Spectrum: Spectral features

Auger Energy Spectrum: Spectral features

Anisotropies- energy spectrum

 the energy and redshift that maximise the signal are compatible with the GZK horizon

Anisotropies- energy spectrum

 the energy and redshift that maximise the signal are compatible with the GZK horizon

Mass composition- energy spectrum

Mass composition- energy spectrum

- X_{\max} \Rightarrow FD composition
- shower front properties
 ⇒ SD composition

Mass composition- energy spectrum

Conclusions

Auger energy spectrum

- vertical SD spectrum acceptance: 5165 km² sr year (02.2007)
- good agreement between the three energy spectra
- 6σ evidence for flux suppression at high energies
- combined with the anisotropies studies \Rightarrow GZK effect

Composition

- mean $X_{\text{max}} \Rightarrow$ mixed composition
- (strong photon limits from SD+ independent FD: TD & SHDM excluded)
- (neutrino limits)
-

Outlook

- (soon) updated energy spectrum: 8000 km² sr year
- high statistics above $10^{19.8}$ eV needed to constrain models \Rightarrow Auger North

Neutrino limit

Auger Energy Spectrum: Extra slide 1

Auger Energy Spectrum: Extra slide 1

Method of Constant Intensity

Hypothesis:

cosmic ray flux is isotropic (at least in local coordinates)

 $\Phi = \frac{dN}{d\Omega dE dA_{eff} dt}$

SD data:

projection on flat array geometry

 $\textit{A}_{\textit{eff}} = \textit{A} \cdot \cos \theta$

intensity: events above a certain energy

 $\frac{dl}{d\cos^2\theta} = \text{const}$

Method of Constant Intensity

aim: find $S(\theta)$ from I = const, $\Delta \cos^2 \theta = \text{const}$

'correct' all shower sizes to same zenith angle 38°

Acceptance

proton

- trigger efficiency= 1 for E>4 EeV (independent of primary mass, core position, etc)
- cross-checked with hybrid events!
- reconstruct any T5 event

iron

XLIII nd Rencontres de Moriond-EW, 2008 of elementary hd. C. Maris for the Pierre Auger Collaboration 26

Acceptance

- trigger efficiency= 1 for E>4 EeV (independent of primary mass, core position, etc)
- cross-checked with hybrid events!
- reconstruct any T5 event
- aperture is sum of elementary hexagons

Energy Calibration

Photon limit

SHDM & TD: astro-ph/0506128 SHDM': C.T. Hill Nucl.Phys. B224, 469(1983), T.W.B.Kibble, Rep. Prog.Phys. 58, 477(1995)

Photon limit

SHDM & TD: astro-ph/0506128 SHDM': C.T. Hill Nucl.Phys. B224, 469(1983), T.W.B.Kibble, Rep. Prog.Phys. 58, 477(1995)