Search for the decay $K_s \rightarrow e^+e^-$

Flavio Archilli on behalf of the KLOE collaboration

XLIII Rencontres de Moriond La Thuile March 1-8, 2008

KLOE experiment

Large cylindrical drift chamber:

• 4 m diameter – 3.7 m length, carbonfiber, gas: 90% He – 10% $IsoC_4H_{10}$ • $\sigma_p/p = 0.4$ % (track with $\theta > 45^\circ$) • $\sigma_{xy}^{hit} = 150 \ \mu m, \ \sigma_z^{hit} = 2 \ mm, \ \sigma_{vtx} \sim 1 \ mm$ • $\sigma_M \sim 1 \ MeV$

Superconducting coil:

• $\langle B \rangle = 0.52 T$

KLOE has collected ~ 2.2 fb⁻¹ during 2001–2005 at DA Φ NE collider.

Lead/scintillating-fiber calorimeter:

• $\sigma_{\rm E} / {\rm E} = 5.7\% / {\rm E}({\rm GeV})$

•
$$\sigma_{\rm t}$$
 = 54 ps / E(GeV) \oplus 50 ps

Tagging of K_s beam

DA Φ NE collider produces ϕ almost at rest. The ϕ decay provides monochromatic and pure beam of kaons.

Pure J^{PC} = 1⁻⁻ state

$$\frac{1}{\sqrt{2}}\left(|K_L,p\rangle|K_S,-p\rangle-|K_L,-p\rangle|K_S,p\rangle\right)$$

Tagging: observation of K_L (interacting with calorimeter) signals presence of K_s :

- K_s beam tagging with ~30% efficiency
- Kaon momentum is measured with 1 MeV resolution $(p(K_s) = p(\phi) p(K_L))$

$$K_{s}K_{L}$$

10⁶/pb⁻¹
p* = 110 MeV/c
 λ_{s} = 6mm; λ_{L} = 3.4 m

Introduction

The $K_s \rightarrow e^+e^-$ decay is a flavourchanging neutral current process, suppressed in the SM. Decay amplitude is dominated by two photon intermediate state.

Using χ PT O(p⁴) we obtain the SM prediction for the branching ratio:

$$BR(K_S \to e^+e^-) \approx 2 \times 10^{-14}$$

The best experimental limit to date has been given by CPLEAR and it is equal to 1.4×10^{-7}

SM prediction is so low leaving room for possible new physics effects to be detected

Data sample and preselection

For this analysis 1.9 fb⁻¹ of integrated luminosity has been used.

Tagged K_s : 650 \times 10⁶ events

Preselection:

- 2 tracks with opposite charge from IP and momentum 120 < |p| < 350 MeV
- invariant mass in electron hypothesis
 Mee > 420 MeV

$$\epsilon_{sig} = \epsilon(tag)\epsilon(presel|tag) = 0.3 \times 0.534$$

After preselection:

 $N_{obs} = 523\ 028$

Calorimeter PID and bkg composition

For signal identification all cluster information are been collected into a χ^2 -like variable, based on:

- TOF
- E/p
- distance between cluster and impact point of the track on calorimeter.

- ${\rm K}_{\rm S} \to \pi^+\pi^-$ events enter preselection because of tracks resolution
- $\phi \to \pi^+ \pi^- \pi^0$ are selected by tagging algorithm with a fake $K_{_L}$ interaction

Background Rejection

Distribution of the track momenta in K_s rest frame (pion hypothesis) allow to reject most of $\pi^+\pi^-$ and $\pi\mu$ BKG events.

 $p_{\pi}^{*} > 220 MeV/c$ $p_{\pi}^{*}(1) + p_{\pi}^{*}(2) > 478 MeV/c$

To reject $\phi \to \pi^+\pi^-\pi^0$ background events a

cut on p_{miss} variable has been applied.

$$\begin{aligned} |\vec{p}_{miss}| &= |\vec{p}_{\phi} - \vec{p}_S - \vec{p}_L| \\ |\vec{p}_{miss}| &\leq 40 \, MeV \end{aligned}$$

Rencontres de Moriond 2008

Signal box

10 ² At the end of rejection algorithm we define a signal box on M_{ee} in order to include up to 20 MeV γ from IB.

 $477 \le M_{ee} < 510 MeV$

A cut on χ^2 is also applied to reject MC background events

 $\chi^2 < 70$

Upper Limit evaluation

In data sample we find $N_{obs} = 0$ and 0 events in MC BKG sample. The Upper limit for the number of signal events μ_{sig} is: UL(μ_{sig}) = 2.3 @ 90% CL Using the following efficiencies:

 $\varepsilon_{sig}(sele|tag) = (0.534 \times 0.871) = 0.465(4)$ $\varepsilon_{\pi\pi}(sele|tag) = 0.6102(5)$

Having normalized to:

 $N_{\pi\pi} = 217\,422\,768$

we have:

$$UL(BR) = UL(\mu_{sig}) \times \frac{\epsilon_{\pi\pi}(sele|tag)}{\epsilon_{sig}(sele|tag)} \times \frac{BR_{\pi\pi}}{N_{\pi\pi}} = 9.3 \times 10^{-9} @\,90\% CL$$

We improve by more than 1 order of magnitude on the present best limit.

Rencontres de Moriond 2008

DA INE collider

DA Φ NE is a e⁺e⁻ collider that works at the peak energy of the ϕ mass: $\sqrt{s} \sim 1019.4 \text{ MeV}$

Cross section for ϕ production at peak is: $\sigma_{peak} \sim 3\mu b \rightarrow L_{peak} = 1.4 \times 10^{32} cm^{-2} s^{-1}$

2.5 fb⁻¹ on tape @ $\sqrt{s} \sim M_{\phi}$ (~ 8 10⁹ ϕ produced)

Signal and Background in $M_{ee} - \chi^2$ plane

DATA vs MC: Region 1 and 3

Check reliability of background normalization after each cut on M_{ee} sidebands Region 1 (420<M_{ee}<460 MeV)

			•
Cut	Data	MC BKG	(Data-MC)/ $\sigma_{\rm DATA+MC}$
Preselection	500314	501339±1249	-0.71
p_{π}^{*} cut	3738	3984±1021	-2.09
N _{prompt} ≪1	1516	1716±59	-2.83
p _{miss} <40 MeV	0	0	
		Region 3 (M _{ee} >530	MeV)
Cut	Data	MC BKG	(Data-MC)/ $\sigma_{\rm DATA+MC}$
Preselection	12201	12214±233	-0.05
p_{π}^{*} cut	12107	12135±232	-0.11
N _{prompt} ≪1	5041	5092±121	-0.36
p _{miss} <40 MeV	1	1 ev 3 π x 1.75	