

Precision Top Quark Mass From a Simultaneous Fit in Lepton+Jets and Dilepton Channels Using 2fb⁻¹

Wojciech Fedorko on behalf of the CDF collaboration

Why measure M_{top} in multiple channels simultaneously?

- Intrinsic treatment of systematics
- Measurements don't have to be Gaussian
- Jet energy scale calibration is uniform across the channels

Event Reconstruction

- Need to reduce the complexity of the event to one number
- Want variable sensitive to the top mass: m^{reco}
- Use measured quantities: jets, leptons, \u00e8₊
- Apply constraints: W mass, masses of quarks and leptons.
- Lepton+Jets channel
 - □ Overconstrained system will perform χ^2 fit
- Dilepton channel
 - Underconstrained integrate over unknown quantites to get best m^{reco}_t

The Jet Energy Scale _{H4}

- JES is the biggest systematic
 - Given measured jets what are the quark momenta?
- Use the resonance in Lepton + Jets channel!

Apply calibration to both channels

Systematics

CDF run II preliminary 1.9fb⁻¹

Source	Size (GeV/c ²)
b-quark energy scale	0.6
Residual JES	0.5
Initial state radiation	0.4
Final state radiation	0.2
Parton distribution functions	0.3
Generator	0.2
Lepton+Jets background shape	0.2
Dilepton background shape	0.1
Monte Carlo statistics	0.1
Lepton energy scale	0.1
Pileup	0.1
Total	1.0

We don't need to assume correlations in systematics between channels

Backup

Lepton + Jets only fit

 M_{top} =171.8 +/- 1.9 (stat.+JES) +/- 1.0 (syst) GeV/c² = 171.8 +/- 2.1 GeV/c²

Dilepton only fit

Bias check

Expected uncertainty at $\sigma_{t\bar{t}}$ =6.7pb

Expected error from PE's at observed #events

gain from DIL

Major cross checks

CDF run II preliminary 1.9fb⁻¹

	Mtop (combo)	Mtop (LJ)	Mtop(DIL)
Nominal	171.9 +/- 1.7	171.8 +/-1.8	171.6 + 3.4 -3.2
No JES prior	171.9 +/-1.7	171.8 +/-1.9	
No bg prior	171.9 +/-1.7	171.8 +/-1.8	171.3 +/-3.5
1tag LJ		169.1 +3.1 -2.6	
2tag LJ		173.6 +2.6 -2.3	
non-tagged DIL			170.4 +5.8 -7.1
tagged DIL			172.2 +4.3 -3.9

JES calibration/result

Combined LJ+DIL fit to data: $\Delta_{JES} = -0.1 \pm 0.4 \sigma_{c}$

Signal, Background expectation, observed LJ

CDF run II preliminary 1.9fb⁻¹

	1 tag	2-tag
Wbb	9.1	2.1
Wcc	5.0	0.4
Wcc	3.3	0.1
W(mistags)	10.4	0.2
single top	2.0	0.7
diboson	2.4	0.2
QCD	10.4	0.3
Total background	42.7 +/- 12.5	4.2 +/- 1.9
ttbar(6.7pb)	156.7	76.6
observed	233	99

Signal, Background expectation, observed DIL

CDF run II preliminary 1.910				
_	non-tagged	tagged		
diboson	8.9	0.3		
DY	16.0	0.9		
fakes	6.1	1.2		
total bg	31.1 +/- 5.6	2.4 +/- 0.6		
ttbar (6.7pb)	40.1	55.8		
observed	83	61		

Data plots: LJ

Data plots: DIL

LJ distributions

DIL distributions

Signal Templates LJ

Signal Templates DIL

Bg Templates LJ

Bg Templates DIL

kinematic distributions

• All quantities out of $\chi 2$ fitter

kinematic distributions

More/Less ISR pt(ttbar)

What can we measure in an event?

- quarks response in the calorimeter clustered into jets
- e,µ- get p_t from curvature or calorimeter response
- υ escape we can only infer p_t
 (p_z unknown)
- b-jets may be 'tagged'
- Why not just add 4-vectors and calculate invariant mass?
 - \Box υ p_z unknown, only total missing p_t known
 - Which jets and leptons go together?
 - Background events contamination
- We need to 'reconstruct' the event- form m_t^{reco} using all available information

Dilepton event reconstruction: Neutrino Weighting Algorithm

- Assume we know the correct parton assignment neutrino polar angles and the top mass:
 - On each side of the decay we can form two scalars:

$$B \equiv 2b\nu = m_t^2 - m_W^2 - m_b^2 - 2b\ell$$

$$L \equiv 2\ell\nu = m_W^2 - m_\ell^2 - m_\nu^2$$

$$= m_W^2 - m_\ell^2$$

Two equations, two unknowns: We solve for $P_x^v P_y^v$ Solve for the other leg

NWA continued...

Compare to the measured missing energy and assign weight:

$$w_{i} = exp(-\frac{(\not\!\!\!E_{x} - P_{x}^{\nu} - P_{x}^{\bar{\nu}})^{2}}{2\sigma_{x}^{2}}) \cdot exp(-\frac{(\not\!\!\!E_{y} - P_{y}^{\nu} - P_{y}^{\bar{\nu}})^{2}}{2\sigma_{y}^{2}})$$

 Sum over neutrino rapidities, lepton-jet assignments and solutions:

$$W(m_t) = \int d\eta_1 \int d\eta_2 P(\eta_1) P(\eta_2) \sum_j \sum_i w(m_t)_{i,j}$$

Scan over a range of top masses and return the mass for which weight is the greatest

- Fit for m_t^{reco}
- Use a-priori knowledge to constrain the fit e.g. W mass
- Each jet-to-parton assignment is tried.
- Neutrino p_z is initialized so that it forms M_w with the lepton (2 solutions) and allowed to float

Constructing pdf's – Kernel Density Estimation

- No need to assume form of the shape
- Naturally extendible to more than 1 dimensions (correlations treated intrinsically)
- No way to interpolate between mass points