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                         Neutrino masses: origin and effective theory

neutrino masses require new fields beyond the Standard Model 

in powers of (1/M)

dimension 5 operators: 

e.g. heavy 

•  

•        effects of these heavy fields for SM particle 
processes: low energy effective theory 

dimension 6 operators: 

∝ 1/M

∝ 1/M2

∝ 1/M3dimension 7 operators: 
....



Dimension 5 operator

there is only one:

Majorana 

L ! λ

M
(LLHH)

! masses beyond the SM

 Favorite options: new physics at higher scale M 

Heavy fields manifest in the low energy effective theory (SM)

via higher dimensional operators

Dimension 5 operator:

It’s unique ! very special role of ! masses:

lowest-order effect of higher energy physics
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The 3 basic seesaw models 

i.e. tree level ways to generate the dim 5 operator
! masses beyond the SM : tree level

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

! masses beyond the SM : tree level

Fermionic Triplet 

Seesaw ( or type III)

2 x 2 = 1 + 3

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

Right-handed singlet:
(type-I seesaw)

Scalar triplet:
(type-II seesaw)

Fermion triplet:
(type-III seesaw)

mν = Y T
N

1
MN

YNv2 mν = Y∆
µ∆

M2
∆

v2 mν = Y T
Σ

1
MΣ

YΣv2

Minkowski; Gellman, Ramon, Slansky; 
Yanagida;Glashow; Mohapatra, Senjanovic
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Foot, Lew, He, Joshi; Ma; Ma, Roy;T.H., Lin, 
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How to distinguish experimentally the 3 seesaw models??

not from the dim-5 operator (i.e. not from neutrino oscil-
                                          lations experim.,         ,...)

                        same unique operator for all 3 models  

we need : - either to be able to produce the heavy states                                                                         

0ν2β

- and/or to distinguigsh them from dim-6 operators                                                                     



Dimension 6 operators in seesaw models

• Type-I: Ld=6 = Y †
N

1
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• Type-III:

• Type-II:
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Dim 5 and dim 6 operator summary
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What about the size of dim 6 effects??

             expected e.g. very suppressed:                      

             but not necessarily so: 

            -        breaks lepton number but        do not!

cd=6 ∼ Y †
N

1
M2

N

YN

cd=5 ∼ Y T
N

1
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} cd=6 ∼
cd=5

MN
∼ mν

MN

1
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∼ 10−13 (MN ∼ TeV)

YN ∼ 10−6

cd=5

cd=6

-        and        : not same Yukawa combinationcd=6

cd=5

                        there is no symmetry reasons why if          is 
      suppressed          should also be    cd=6

cd=5



                            “Direct Lepton number Violation,,

     assume a L conserving setup with not 
  too large             and large Yukawas   

 assume L is broken by a small perturbation

large

MN,∆,Σ MN,∆,Σ ∼ 100 GeV− 100 TeV

cd=6 ∼
Y 2

M2

no L violationcd=5 = mν = 0

µ

                          neutrino masses directly proport. 
                       to a small source of L violation
                     rather than inversely proport. 

to a large mass  

µ

M
mν = f(Y )

µ

M2
v2



Direct Lepton number Violation in type-II model

if              no L violation

! masses beyond the SM : tree level

2 x 2 = 1 + 3
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                        if      large,       small       small enough neutrino 
masses with large dim 6 effects
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DLV in type-I (and type-III) model

example with one light neutrino and 2 N:

if      is large,        not too high:                       

INVERSE SEESAW texture
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* Toy: 1 light ! 

Mohapatra, Valle, Glez- Garcia

“inverse seesaw” as in 
      Gonzalez-Garcia, Valle ‘89 

           Kersten, Smirnov ’07
            Abada, Biggio, Bonnet, 

  Gavela, T.H. ‘07

L(ν) = 1, L(N1) = −1, L(N2) = 1
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* Toy: 1 light ! 

Mohapatra, Valle, Glez- Garcia
YN MN

cd=6

(L is approximately conserved)

       large with               

           Kersten, Smirnov ’07
            Abada, Biggio, Bonnet, 
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DLV in type-I (and type-III) model
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Phenomenology of dim 6 operators

long list of effects depending on the seesaw model:

-rare lepton decays: µ→ eγ, τ → eγ, τ → µγ, µ→ eee, τ → 3 l
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Phenomenology of dim 6 operators

long list of effects depending on the seesaw model:

-rare lepton decays: µ→ eγ, τ → eγ, τ → µγ, µ→ eee, τ → 3 l

-universality tests: W → lν̄, π → lν̄, τ → lνν̄, ...

-Z and W decays:

-Z invisible width: Z → νν̄

-   parameterρ

- W mass

- ........

Z → ll̄, W → lν



                          Bounds on Yukawa couplings from dim 6 operator 
 induced processes: type-II model

Scalar triplet seesaw Bounds on cd=6

Scalar triplet seesaw

Combined bounds on cd=6

           Abada, Biggio, Bonnet, 
Gavela, T.H. ‘07

         Partly from: Barger et
            al ’82; Pal ’83; Bernabeu 

       et al ’84, ‘86; Bilenky, 
        Petcov’87; Gunion et 
        al ’89, ‘06; Swartz ‘89; 

Mohapatra ’92               



                          Bounds on Yukawa couplings from dim 6 operator 
induced processes: type-I model

All in all, as of today, 

            for the Singlet-fermion Seesaws:

(NN+-1)!"=

-rare lepton decays: µ→ eγ, τ → eγ, τ → µγ, µ→ eee, τ → 3 l

-universality tests:

-Z and W decays:

-Z invisible width: Z → νν̄

           effects come mostly from the mixings between the    and
          N which induce modifications of W couplings to leptons

    and Z couplings to    (through non-unitarity effects)

ν

ν

W → lν̄

           Abada, Biggio, Bonnet, 
Gavela, T.H. ‘07

   Antusch, Biggio, Fernandez-
Martinez, Lopez-Pavon, Gavela ‘06

Z → ll̄, W → lν



                          Bounds on Yukawa couplings from dim 6 operator 
  induced processes: type-III model

For the Triplet-fermion Seesaws (type III):

(NN+-1)!"=

       effects come from mixings between     and neutral triplets 
     and between charged leptons and charged triplets which 

induce modification of  W couplings to leptons and Z 
    couplings to both l and    (through non-unitarity effects) ν

ν

@ tree level 

in Type III

(not in Type I)

Bounds on Yukawas type III
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Production @ colliders
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Production @ colliders
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     +

W decays

Invisible Z width

Universality tests

example:               :     µ→ eee
Z0

+
+

µ

e

e

e

µ  at tree level (not at 
    one-loop as in type-I)     

           Abada, Biggio, Bonnet, 
Gavela, T.H. ‘07

Σ−



General trend

In summary, for all scalar and fermionic 

   Seesaw models, present bounds:

or strongeror stronger



Summary

•

• dimension 6 operator effects are crucial for distinguishing the seesaw models

dimension 6 effects are e.g. suppressed but not necessarily

• rich associated phenomenology

Direct Lepton number Violation pattern

       provides bounds on Yukawa coupling - mass combinations

same for all 3 seesaw models



Backup



3 nus +3 N DFV case

while the second case leads to:

mν = −2
mD1µ

MN1

M2
N1

M2
N1

+ m2
D1

+
µ2

MN1

MN2

MN1

(M2
N1
−m2

D1
)2

(M2
N1

+ m2
D1

)2
+ O(µ3) . (161)

Eq. (160) shows that the neutrino mass is suppressed by an extra factor µ/MN1 , so that
the smallness of neutrino masses, and the argument of no fine tuning, do not require
tiny Yukawa couplings.

As for the first term in Eq. (161), it has the standard neutrino mass form, i.e.
with 2 Dirac masses in the numerator and one Majorana mass in the denominator,
but unlike the usual Seesaw formula, it involves only the product of 2 different Dirac
masses. Therefore, if one of them is smaller than the other, e.g. µ << mD1 , a small
neutrino mass can be obtained here too with a large Yukawa coupling in mD1, and
no fine-tuning. As for the second term in Eq. (161), which involves the independent
parameter MN2 , it also leads to suppressed neutrino masses, even if MN2 largely breaks
lepton number.

Now, in the limit µ → 0 the point is that the coefficient of the d = 5 operator
vanishes but that of the d = 6 operator does not. This can be seen from the fact that
the d = 6 operator takes the form (YN)†(M−2

N )(YN), see above, and doesn’t vanish in
this limit. Eq. (10) in all cases above, with for example mD1 = Y1v ∼ v and MN1 ∼ 1
TeV, becomes simply |Y1|2/M2

N1
∼ 1/M2

N1
which is large.

The one left-handed plus two right-handed neutrino example above can be general-
ized to the 3 left-handed plus 3 right-handed neutrino above. The condition for having
vanishing neutrino masses is to start with a 6 by 6 mass matrix which has rank 3.
Assuming that all entries of the Yukawa coupling matrix are independent (i.e. barring
cancellations between the various entries), it turns out that there is only one possibility
to have large Yukawa couplings with three massless light neutrinos and three massive
right-handed neutrinos. In the basis (νe, νµ, ντ , N1, N2, N3) it is





0 0 0 c 0 0
0 0 0 d 0 0
0 0 0 e 0 0
c d e f g a
0 0 0 g b 0
0 0 0 a 0 0




, (162)

plus permutations. This matrix has the particularity that only one of the 3 right-
handed neutrinos couples to light neutrinos at leading order (just as the 1 ν plus 2 N
case above). From a simple lepton number assignment there is only one way to justify
this pattern, which gives in addition f = g = 0, i.e. by taking Lνe = Lνµ = Lντ =
LN1 = −LN3 = 1 and LN2 = 0 21, 22. The matrix of Eq. (162) can be perturbed in many

21For completeness, it can be noted that the 3 light νs plus 2 heavy N case also leads to a unique
possible texture. It corresponds to take no N3, i.e. a = 0, and requires to take b = 0 in addition. It
can be justified from a L assignment if moreover f = 0 with L = 1 for all particles except N2 which
has L = −1.

22During the completion of this work, Ref. [45] appeared, which also considers this particular texture.
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
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plus permutations. This matrix has the particularity that only one of the 3 right-
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21For completeness, it can be noted that the 3 light νs plus 2 heavy N case also leads to a unique
possible texture. It corresponds to take no N3, i.e. a = 0, and requires to take b = 0 in addition. It
can be justified from a L assignment if moreover f = 0 with L = 1 for all particles except N2 which
has L = −1.

22During the completion of this work, Ref. [45] appeared, which also considers this particular texture.
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Singlet and triplet Seesaws differ in the
    the pattern of the Z couplings



following constraints on the εαβ coefficients:3

|εeµ| =
v2
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M †
Σ

1

MΣ
YΣ|µe ! 1.1 · 10−4 (32)

|εµτ | =
v2

2
|Y †

Σ

1

M †
Σ

1

MΣ
YΣ|τµ ! 1.5 · 10−2 (33)

|εeτ | =
v2

2
|Y †

Σ

1

M †
Σ

1

MΣ
YΣ|τe ! 2.4 · 10−2 . (34)

Comparison of l→ l′γ and l→ 3l′ decays

The bounds of Eqs. (32)-(34) from l → l′γ decays turn out to be on the same
parameters ε as the ones obtained from µ→ 3e or τ → 3l decays, derived in Ref. [10].
This can be understood from the fact that, at order 1/M2

Σ, for example for µ → eγ
and µ → 3e, there is only one way to combine two Yukawa couplings and two inverse
MΣ mass matrices to induce a µ-e transition along a same fermionic line: through the
combination εeµ (i.e. the flavour structure of the µ-to-e fermionic line is the same for
both processes, it corresponds to a µ which mixes with a fermion triplet which mixes
with an electron). This can also be understood from the related fact that the number
of independent parameters contained in the coefficients of the dimension five operators
(proportional to the neutrino mass matrix) and dimension six operators (encoded in
the εαβ [10]) of the low energy theory (obtained in the limit of large fermion triplet
mass) equals the number of independent parameters of the original theory. This implies
that any physical transition studied at order 1/M2

Σ, necessarily has to be proportional
to the dimension six operator coefficients, and there is only one which gives a µ to e
transition: εeµ.

As a result we obtain the following fixed ratios for these branching ratios:

Br(µ→ eγ) = 1.3 · 10−3 · Br(µ→ eee) , (35)

Br(τ → µγ) = 1.3 · 10−3 · Br(τ → µµµ) = 2.1 · 10−3 · Br(τ− → e−e+µ−) , (36)

Br(τ → eγ) = 1.3 · 10−3 · Br(τ → eee) = 2.1 · 10−3 · Br(τ− → µ−µ+e−) . (37)

The ratios are much smaller than unity because l→ 3l′ is induced at tree level through
mixing of the charged leptons with the charged components of the fermion triplets
[10], while l→ l′γ is a one-loop process. The results of Eqs. (35)-(37) hold in the limit
where MΣ " MW,Z,H , as they are based on Eq. (31). Not taking this limit, i.e. using
Eq. (63) of the Appendix, for values of MΣ as low as ∼ 100 GeV, these ratios can vary
around these values by up to one order of magnitude. Numerically it turns out that
the bounds in Eqs. (32)-(34) are thus not as good as the ones coming from µ → eee,
τ → eee and τ → µµµ decays, which give |εeµ| < 1.1 · 10−6, |εµτ | < 2.9 · 10−4, |εeτ | <
5.1 · 10−4 respectively (using the experimental bounds: Br(µ → eee) < 1 · 10−12 [1],

3Note that these bounds show that the approximation we made in the above to work only at first
order in Y 2v2/M2

Σ is justified.
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l->l’ gamma versus l->3l’ ratios are predicted to fixed 
values in the type-III seesaw model
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l->l’ gamma: l->3l’:
Constraints on Process Bound

|(NN †)eµ| µ− → e+e−e− < 1.1 · 10−6

|(NN †)eτ | τ− → e+e−e− < 1.2 · 10−3

|(NN †)µτ | τ− → µ+µ−µ− < 1.2 · 10−3

|(NN †)τe| τ− → µ+µ−e− < 1.6 · 10−3

|(NN †)τµ||(NN †)eµ| τ− → e+µ−µ− < 3.1 · 10−4

|(NN †)τµ| τ− → e+e−µ− < 1.5 · 10−3

|(NN †)τe||(NN †)µe| τ− → µ+e−e− < 2.9 · 10−4

|(NN †)eµ| µ→ eγ 2.8 · 10−5

|(NN †)µτ | τ → µγ 5.2 · 10−3

|(NN †)eτ | τ → eγ 6.6 · 10−3

Table 8: Constraints on (NN †)αβ from charged leptons decays.

This Lagrangian, in which the charged components of the triplets are expressed in terms
of 2-component fields, is not convenient when considering mixing with the charged
leptons, which as usual are expressed in 4-component notation. As the charged triplet
components have 4 degrees of freedom they can all be written in terms of a 4-component
unique Dirac spinor,

Ψ ≡ Σ+c
R + Σ−R . (117)

The neutral fermionic triplet components on the other hand can be left in 2-component
notation, since they have only two degrees of freedom and mix with the neutrinos, which
are also described by 2-component fields. This leads to the Lagrangian

L = Ψi∂/Ψ + Σ0
Ri∂/Σ0

R −ΨMΣΨ−
(

Σ0
R

MΣ

2
Σ0c

R + h.c.

)

+ g
(
W+

µ Σ0
RγµPRΨ + W+

µ Σ0c
R γµPLΨ + h.c.

)
− g W 3

µΨγµΨ

−
(
φ0Σ0

RYΣνL +
√

2φ0ΨYΣlL + φ+Σ0
RYΣlL −

√
2φ+νL

cY T
Σ Ψ + h.c.

)
. (118)

The mass term of the charged sector shows then the usual aspect for Dirac particles
(omitting flavor indices):

L % −(lR ΨR)

(
ml 0
YΣv MΣ

) (
lL
ΨL

)
− (lL ΨL)

(
ml Y †

Σv
0 MΣ

) (
lR
ΨR

)
, (119)
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