Implications of D⁰-D⁰ mixing for New Physics

Alexey A. Petrov Wayne State University

Table of Contents:

Introduction

- New Physics contributions in charm mixing
 - ΔC =1 operators
 - ΔC =2 operators

Conclusions and outlook

Introduction: identifying New Physics

The LHC ring is 27km in circumference

How can KEK OR other older machines help with New Physics searches?

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics

Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

Examples: $D^0 \rightarrow p^+ \pi^- \nu$

2. Processes forbidden in the Standard Model at tree level

Examples:
$$D^0 - \overline{D}^0, \ D^0 \to X\gamma, \ D \to X \nu \overline{\nu}$$

3. Processes allowed in the Standard Model Examples: relations, valid in the SM, but not necessarily in general

CKM triangle relations

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics

Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

Examples: $D^0 \rightarrow p^+ \pi^- \nu$

Processes forbidden in the Standard Model at tree level

Examples:
$$D^0 - \overline{D}^0, D^0 \to X\gamma, \ D \to X\nu\bar{\nu}$$

3. Processes allowed in the Standard Model Examples: relations, valid in the SM, but not necessarily in general

CKM triangle relations

Recent experimental results

• BaBar, Belle and CDF results

$$y'_{\rm D} = (0.97 \pm 0.44 \pm 0.31) \cdot 10^{-2} \quad \text{(BaBar)} ,$$

$$y^{\rm (CP)}_{\rm D} = (1.31 \pm 0.32 \pm 0.25) \cdot 10^{-2} \quad \text{(Belle)} .$$

$$y'_{D} = (0.85 \pm 0.76) \cdot 10^{-2} \quad \text{(CDF)}$$

• Belle Dalitz plot result ($D^0 \rightarrow K_S \pi^+ \pi^-$)

$$x_{\rm D} = (0.80 \pm 0.29 \pm 0.17) \cdot 10^{-2} ,$$

 $y_{\rm D} = (0.33 \pm 0.24 \pm 0.15) \cdot 10^{-2}$

• Preliminary HFAG numbers

$$x_{\rm D} = 8.5^{+3.2}_{-3.1} \cdot 10^{-3} ,$$

 $y_{\rm D} = 7.1^{+2.0}_{-2.1} \cdot 10^{-3} \qquad (\cos \delta_{K\pi} = 1.09 \pm 0.66)$

Introduction: why do we care?

$\overline{b} \frac{\overline{t, \overline{c, u}}}{\sum \xi} \overline{d}$	$\overline{D^0}$ – D^0 mixing	$\overline{B^0} - B^0$ mixing
$d \xrightarrow{W \\ t,c,u} \begin{cases} w \\ t,c,u \\ v_{td} \\ v_{tb} \end{cases} b$	 intermediate down-type quarks SM: b-quark contribution is negligible due to V_{cd}V_{ub}* 	 intermediate up-type quarks SM: t-quark contribution is dominant
$\overline{c} \xrightarrow{\overline{d, s, b}} \overline{u}$. rate ∝ $f(m_s) - f(m_d)$ (zero in the SU(3) limit) Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002 2 nd order effect!!!	 rate ∝ m_t² (expected to be large)
u <u>d</u> ,s,b D-D mixing	 Sensitive to long distance QCD Small in the SM: New Physics! (must know SM x and y) 	1. Computable in QCD (*) 2. Large in the SM: <mark>CKM</mark> !

(*) up to matrix elements of 4-quark operators

Standard Model predictions

\star Predictions of x and y in the SM are complicated

-second order in flavor SU(3) breaking -m_c is not quite large enough for OPE -x, y << 10⁻³ ("short-distance") -x, y ~ 10⁻² ("long-distance")

* Short distance:

-assume m_c is large -combined m_s, 1/m_c, a_s expansions -leading order: m_s², 1/m_c⁶!

> H. Georgi, ... I. Bigi, N. Uraltsev

★ Long distance:

-assume mc is NOT large
 -sum of large numbers with alternating signs, SU(3) forces zero!
 -multiparticle intermediate states dominate
 J. Donoghue et. al.

J. Donoghue et. al. P. Colangelo et. al.

A.F., Y.G., Z.L., Y.N. and A.A.P. Phys.Rev. D69, 114021, 2004

Resume: a contribution to x and y of the order of 1% is natural in the SM

 \succ Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

 \succ Double insertion of ΔC =1 affects x and y:

Amplitude $A_n = \left\langle D^0 \left| \left(H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1} \right) \right| n \right\rangle \equiv A_n^{SM} + A_n^{NP}$

Suppose $|A_n^{NP}|/|A_n^{SM}|$: $O(\text{exp. uncertainty}) \le 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) \approx \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$
phase space

13

 \succ Double insertion of ΔC =1 affects x and y:

Amplitude $A_n = \langle D^0 | (H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1}) | n \rangle \equiv A_n^{SM} + A_n^{NP}$

Suppose $|A_n^{NP}|/|A_n^{SM}|$: $O(\exp. \operatorname{uncertainty}) \le 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) \approx \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$
phase space

> Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

 \succ Double insertion of ΔC =1 affects x and y:

Amplitude $A_n = \langle D^0 | (H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1}) | n \rangle \equiv A_n^{SM} + A_n^{NP}$

Suppose $|A_n^{NP}|/|A_n^{SM}|$: $O(\exp. \operatorname{uncertainty}) \le 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) \approx \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space

 \blacktriangleright Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

> Double insertion of
$$\Delta C$$
=1 affects x and y:

Amplitude $A_n = \left\langle D^0 \left| \left(H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1} \right) \right| n \right\rangle \equiv A_n^{SM} + A_n^{NP}$

Suppose $|A_n^{NP}|/|A_n^{SM}|$: $O(\exp. \operatorname{uncertainty}) \le 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) = \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space Zero in the SU(3) limit
Falk Grossman Light and A A P

Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002 2nd order effect!!! \blacktriangleright Local Δ C=2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

> Double insertion of
$$\Delta C$$
=1 affects x and y:

Amplitude $A_n = \langle D^0 | (H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1}) | n \rangle \equiv A_n^{SM} + A_n^{NP}$

Suppose $|A_n^{NP}|/|A_n^{SM}|$: $O(\exp. \operatorname{uncertainty}) \le 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) = \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space Zero in the SU(3) limit
Falk, Grossman, Ligeti, and A.A.P.
Phys.Rev. D65, 054034, 2002 Can be significant!!!

2nd order effect!!!

Alexey A Petrov (WSU)

Global Analysis of New Physics: $\Delta C=1$

\succ Let's write the most general ΔC =1 Hamiltonian

$$\mathcal{H}_{\mathrm{NP}}^{\Delta C=-1} = \sum_{q,q'} D_{qq'} [\bar{\mathcal{C}}_1(\mu)Q_1 + \bar{\mathcal{C}}_2(\mu)Q_2],$$
$$Q_1 = \bar{u}_i \bar{\Gamma}_1 q'_j \bar{q}_j \bar{\Gamma}_2 c_i, \qquad Q_2 = \bar{u}_i \bar{\Gamma}_1 q'_i \bar{q}_j \bar{\Gamma}_2 c_j$$

E. Golowich, S. Pakvasa, A.A.P. Phys. Rev. Lett. 98, 181801, 2007

Only light on-shell (propagating) quarks affect $\Delta\Gamma$:

$$y = -\frac{4\sqrt{2}G_F}{M_D\Gamma_D} \sum_{q,q'} \mathbf{V}_{cq'}^* \mathbf{V}_{uq} D_{qq'} (K_1 \delta_{ik} \delta_{j\ell} + K_2 \delta_{i\ell} \delta_{jk})$$
$$\times \sum_{\alpha=1}^5 I_\alpha(x, x') \langle \bar{D}^0 | \mathcal{O}_\alpha^{ijk\ell} | D^0 \rangle,$$

with
$$K_1 = [C_1 \bar{C}_1 N_c + (C_1 \bar{C}_2 + \bar{C}_1 C_2)], \quad K_2 = C_2 \bar{C}_2$$
 and

This is the master formula for NP contribution to lifetime differences in heavy mesons

$$\begin{split} \mathcal{O}_{1}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\gamma_{\nu}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\gamma^{\nu}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{2}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\not\!\!/_{c}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\not\!\!/_{c}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{3}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\not\!\!/_{c}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{4}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\not\!\!/_{c}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{5}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\Gamma^{\mu}c_{i}, \end{split}$$

Global Analysis of New Physics: $\Delta C=1$

Some examples of New Physics contributions

Model	У _D	Comment
RPV-SUSY	6 10 ⁻⁶	Squark Exch.
	-4 10-2	Slepton Exch.
Left-right	-5 10-6	'Manifest'.
	-8.8 10 ⁻⁵	'Nonmanifest'.
Multi-Higgs	2 10-10	Charged Higgs
Extra Quarks-	10-8	Not Little Higgs

E. Golowich, S. Pakvasa, A.A.P. Phys. Rev. Lett. 98, 181801, 2007

A.A.P. and G. Yeghiyan Phys. Rev. D77, 034018 (2008)

For considered models, the results are smaller than observed mixing rates

Global Analysis of New Physics: $\Delta C=2$

Alexey A Petrov (WSU)

10

Moriond-2008, March 1-8 2008

RG-running relate $C_i(m)$ at NP scale to the scale of $m \sim 1$ GeV, where ME are computed (on the lattice) Each model of New Physics

$$\frac{d}{d\log\mu}\vec{C}(\mu) = \hat{\gamma}^T(\mu)\vec{C}(\mu)$$

Each model of New Physics provides unique matching condition for $C_i(L_{NP})$

9

New Physics in x: lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.

Extra gauge bosons

Left-right models, horizontal symmetries, etc.

Extra scalars

Two-Higgs doublet models, leptoquarks, Higgsless, etc.

Extra fermions

4th generation, vector-like quarks, little Higgs, etc.

Extra dimensions

Universal extra dimensions, split fermions, warped ED, etc.

Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

New Physics in x: lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.

Extra gauge bosons

Left-right models, horizontal symmetries, etc.

Extra scalars

Two-Higgs doublet models, leptoquarks, Higgsless, etc.

Extra fermions

4th generation, vector-like quarks, little Higgs, etc.

Extra dimensions

Universal extra dimensions, split fermions, warped ED, etc.

Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

Total: 21 models considered

Dealing with New Physics-I

Consider an example: FCNC Z⁰-boson

appears in models with extra vector-like quarks little Higgs models

1. Integrate out Z: for $\mu < M_Z$ get

$$\mathcal{H}_{2/3} = \frac{g^2}{8\cos^2\theta_w M_Z^2} \left(\lambda_{uc}\right)^2 \bar{u}_L \gamma_\mu c_L \bar{u}_L \gamma^\mu c_L$$

2. Perform RG running to $\mu \sim m_c$ (in general: operator mixing)

3. Compute relevant matrix elements and x_{D}

$$x_{\rm D}^{(2/3)} = \frac{2G_F f_{\rm D}^2 M_{\rm D}}{3\sqrt{2}\Gamma_D} B_D \left(\lambda_{uc}\right)^2 r_1(m_c, M_Z)$$

4. Assume no SM - get an upper bound on NP model parameters (coupling)

Alexey A Petrov (WSU)

Moriond-2008, March 1-8 2008

Dealing with New Physics - II

> Consider another example: warped extra dimensions

FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$$\mathcal{H}_{RS} = \frac{2\pi k r_c}{3M_1^2} g_s^2 \left(C_1(M_n) Q_1 + C_2(M_n) Q_2 + C_6(M_n) Q_6 \right)$$

2. Perform RG running to $\mu \sim m_c$

$$\mathcal{H}_{RS} = \frac{g_s^2}{3M_1^2} \left(C_1(m_c)Q_1 + C_2(m_c)Q_2 + C_3(m_c)Q_3 + C_6(m_c)Q_6 \right)$$

3. Compute relevant matrix elements and x_{D}

$$x_{\rm D}^{(RS)} = \frac{g_s^2}{3M_1^2} \frac{f_D^2 B_D M_D}{\Gamma_D} \left(\frac{2}{3} [C_1(m_c) + C_6(m_c)] - \frac{1}{6} C_2(m_c) - \frac{5}{12} C_3(m_c) \right)$$

Dealing with New Physics - II

> Consider another example: warped extra dimensions

FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$$\mathcal{H}_{RS} = \frac{2\pi k r_c}{3M_1^2} g_s^2 \left(C_1(M_n) Q_1 + C_2(M_n) Q_2 + C_6(M_n) Q_6 \right)$$

2. Perform RG running to $\mu \sim m_c$

$$\mathcal{H}_{RS} = \frac{g_s^2}{3M_1^2} \left(C_1(m_c)Q_1 + C_2(m_c)Q_2 + C_3(m_c)Q_3 + C_6(m_c)Q_6 \right)$$

3. Compute relevant matrix elements and x_{D}

$$x_{\rm D}^{(RS)} = \frac{g_s^2}{3M_1^2} \frac{f_D^2 B_D M_D}{\Gamma_D} \left(\frac{2}{3} [C_1(m_c) + C_6(m_c)] - \frac{1}{6} C_2(m_c) - \frac{5}{12} C_3(m_c) \right)$$

New Physics in x: extra fermions

Fourth generation

$$x_{\rm D}^{(4^{th})} = \frac{G_F^2 M_W^2}{6\pi^2 \Gamma_D} f_D^2 M_D B_D \lambda_{b'}^2 S(x_{b'}, x_{b'}) r_1(m_c, M_W)$$

Vector-like quarks (Q=+2/3)

$$x_{\rm D}^{(-1/3)} \simeq \frac{G_F^2}{6\pi^2 \Gamma_D} f_D^2 B_D r_1(m_c, M_W) M_D M_W^2 \left(V_{cS}^* V_{uS}\right)^2 f(x_S)$$

Vector-like quarks (Q=-1/3)

$$x_{\rm D}^{(2/3)} = \frac{2G_F}{3\sqrt{2}\Gamma_D} \left(\lambda_{uc}\right)^2 r_1(m_c, M_Z) f_{\rm D}^2 M_{\rm D} B_1$$

$$\lambda_{uc} \equiv -\left(V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb}\right)$$

New Physics in x: extra vector bosons

Alexey A Petrov (WSU)

Moriond-2008, March 1-8 2008

New Physics in x: extra scalars

2-Higgs doublet model

$$x_{\rm D}^{(2\rm HDM)} = \frac{G_F^2 M_W^2}{6\pi^2 \Gamma_D} f_D^2 M_D B_D r_1(m_c, M_{H^{\pm}}) \\ \times \sum_{i,j} \lambda_i \lambda_j \left[\tan^4 \beta A_{HH}(x_i, x_j, x_H) + \tan^2 \beta A_{WH}(x_i, x_j, x_H) \right]$$

Flavor-changing neutral Higgs

$$x_{\rm D}^{\rm (H)} = \frac{5f_D^2 M_D B_D}{24\Gamma_D M_H^2} \left[\frac{1-6\eta}{5} C_3(m_c) + \eta \left(C_4(m_c) + C_7(m_c) \right) - \frac{12\eta}{5} \left(C_5(m_c) + C_8(m_c) \right) \right]$$

Higgsless models

$$\begin{aligned} x_{\rm D}^{(\not\!\!\!\!H)} &= \frac{f_D^2 M_D B_D}{\Gamma_D} \left(c_L^c s_L^c \right)^2 \frac{g^2}{M^2} \left[\frac{2}{3} \left(C_1(m_c) + C_6(m_c) \right) + C_2(m_c) \left(-\frac{1}{2} + \frac{\eta}{3} \right) \right. \\ &+ \frac{1}{12} C_3(m_c) \left(1 - 6\eta \right) \right] \quad . \end{aligned}$$

Moriond-2008, March 1-8 2008

Alexey A Petrov (WSU)

New Physics in x: extra dimensions

Split fermion models

$$x_{\rm D}^{(split)} = \frac{2}{9\Gamma_D} g_s^2 R_c^2 \pi^2 \Delta y \ r_1(m_c, M) |V_{L\,11}^u V_{L\,12}^{u*}|^2 f_D^2 M_D B_1$$

Warped geometries

$$x_{\rm D}^{(RS)} = \frac{g_s^2}{3M_1^2} \frac{f_D^2 B_D M_D}{\Gamma_D} \left(\frac{2}{3} [C_1(m_c) + C_6(m_c)] - \frac{1}{6} C_2(m_c) - \frac{5}{12} C_3(m_c)\right)$$

+ others...

Summary: New Physics

Model	Approximate Constraint
Fourth Generation (Fig. 2)	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5 \text{ (GeV)}$
Q=-1/3Singlet Quark (Fig. 4)	$s_2 \cdot m_S < 0.27~({\rm GeV})$
$Q=\pm 2/3$ Singlet Quark (Fig. 6)	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$
Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark
	Box: Region of parameter space can reach observed $x_{\rm D}$
Generic Z' (Fig. 7)	$M_{Z'}/C>2.2\cdot 10^3~{\rm TeV}$
Family Symmetries (Fig. 8)	$m_1/f > 1.2 \cdot 10^3~{\rm TeV}$ (with $m_1/m_2 = 0.5)$
Left-Right Symmetric (Fig. 9)	No constraint
Alternate Left-Right Symmetric (Fig. 10)	$M_R > 1.2 \ {\rm TeV} \ (m_{D_1} = 0.5 \ {\rm TeV})$
	$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$
Vector Leptoquark Bosons (Fig. 11)	$M_{VLQ} > 55(\lambda_{PP}/0.1) \text{ TeV}$
Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint
Flavor Changing Neutral Higgs (Fig. 15)	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$
FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_H/ \Delta_{uc} > 600 \text{ GeV}$
Scalar Leptoquark Bosons	See entry for RPV SUSY
Higgsless (Fig. 17)	$M > 100 { m ~TeV}$
Universal Extra Dimensions	No constraint
Split Fermion (Fig. 19)	$M/ \Delta y > (6\cdot 10^2~{\rm GeV})$
Warped Geometries (Fig. 21)	$M_1 > 3.5~{\rm TeV}$
Minimal Supersymmetric Standard (Fig. 23)	$ (\delta^{\rm s}_{12})_{\rm LR,RL} < 3.5\cdot 10^{-2}$ for $\tilde{m}\sim 1~{\rm TeV}$
	$ (\delta^{u}_{12})_{\rm LL,RR} < .25$ for $\tilde{m} \sim 1~{\rm TeV}$
Supersymmetric Alignment	$\tilde{m} > 2 { m TeV}$
Supersymmetry with RPV (Fig. 27)	$\lambda_{12k}'\lambda_{11k}'/m_{\tilde{d}_{R,k}} < 1.8\cdot 10^{-3}/100~{\rm GeV}$
Split Supersymmetry	No constraint

 ✓ Considered 21 wellestablished models

- ✓ Only 4 models yielded no useful constraints
- Consult paper for explicit constraints

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Conclusions

Indirect effects of New Physics at flavor factories help to distinguish among models possibly observed at the LHC

- a combination of bottom/charm sector studies
- don't forget measurements unique to tau-charm factories

Charm provides great opportunities for New Physics studies

- unique access to up-type quark sector
- large available statistics
- mixing: x, y = 0 in the SU(3) limit (as $V_{cb}^*V_{ub}$ is very small)
- mixing is a second order effect in SU(3) breaking (x,y ~ 1% in the Standard Model)
- large contributions from New Physics are possible
- out of 21 models studied, 17 yielded competitive constraints
- additional input to LHC inverse problem
- Observation of CP-violation in the current round of experiments provide "smoking gun" signals for New Physics

Additional slides

Alexey A Petrov (WSU)

Recent results from BaBar

* Time-dependent $D \to K \pi$ analysis

$$\Gamma_{\rm WS}(t) = e^{-\Gamma t} \left(R_D + y' \sqrt{R_D} (\Gamma t) + \left(\frac{x'^2 + y'^2}{4} \right) (\Gamma t)^2 \right)$$

- No evidence for CPviolation
- Accounting for systematic errors, the no-mixing point is at 3.9sigma contour

Theoretical estimates I

A. Short distance + "subleading corrections" (in $\{m_s, 1/m_c\}$ expansion):

$$y_{sd}^{(6)} \propto \frac{\left(m_s^2 - m_d^2\right)}{m_c^2} \frac{m_s^2 + m_d^2}{m_c^2} \mu_{had}^{-2} \propto m_s^6 \Lambda^{-6}$$
$$x_{sd}^{(6)} \propto \frac{\left(m_s^2 - m_d^2\right)}{m_c^2} \mu_{had}^{-2} \propto m_s^4 \Lambda^{-4}$$

4 unknown matrix elements

...subleading effects?

Theoretical estimates II

B. Long distance physics dominates the dynamics...

m_c is NOT large !!!

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and \overline{D}^0 can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

> J. Donoghue et. al. P. Colangelo et. al.

$$y_2 = Br(D^0 \to K^+ K^-) + Br(D^0 \to \pi^+ \pi^-) - 2\cos \delta \sqrt{Br(D^0 \to K^+ \pi^-)Br(D^0 \to \pi^+ K^-)}$$

If every Br is known up to O(1%)the result is expected to be O(1%)! \square

The result here is a series of large numbers with alternating signs, SU(3) forces 0

x = ? Extremely hard...

Need to "repackage" the analysis: look at the complete multiplet contribution

Theoretical estimates II

B. Long distance physics dominates the dynamics...

m_c is NOT large !!!

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and \overline{D}^0 can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

> J. Donoghue et. al. P. Colangelo et. al.

$$y_2 = Br(D^0 \to K^+ K^-) + Br(D^0 \to \pi^+ \pi^-)$$

$$\bigcirc 2\cos \delta \sqrt{Br(D^0 \to K^+ \pi^-) Br(D^0 \to \pi^+ K^-)}$$

cancellation expected!

If every Br is known up to O(1%)the result is expected to be O(1%)! \square

The result here is a series of large numbers with alternating signs, SU(3) forces 0

x = ? Extremely hard...

Need to "repackage" the analysis: look at the complete multiplet contribution