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γ/φ3 is the less precisely known of the Unitarity Triangle angles. The general problematics of
measurements of this parameter are discussed and recent experimental results from Babar and
Belle are presented.

1 Measurements of the CKM angle γ/φ3

1.1 Introduction

In the Standard Model, CP violation is described by the presence of an irreducible phase in the
CKM matrix, the unitary matrix that relates the weak interaction with the mass eigenstates.
The CKM can be written as:

VCKM =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







where Vq1q2 is the coupling related to the transition q1 → q2. Many parametrizations exist in
literature, we use here a generalization of the Wolfenstein parametrization 1 as presented in 2,
where the four independent parameters are λ, A, ρ̄ and η̄ (where the latter is the CP violating
phase). The matrix is written:

VCKM =







1 − λ2

2 λ Aλ3(ρ̄ − iη̄)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 1






+ O(λ4) (1)



The unitarity of the VCKM matrix implies several relations between its elements that can be
represented as triangles in the (ρ̄, η̄) plane. We choose the relation V ∗

ubVud +V ∗
cbVcd +V ∗

tbVtd = 0,
whose elements can be determined by B physics measurements. This triangle, represented in
fig. 1, is particularly attracting from the experimental point of view, since it has all the sides
of order λ3. The angles of the triangle are called either α, β and γ or φ2, φ1 and φ3, we adopt

ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Figure 1: Unitarity Triangle, represented in the (ρ̄, η̄) plane.

here the first notation.
In the Wolfenstein parametrization the only complex elements, up to terms of order O(λ5),

are Vub and Vtd and the phases γ and β can be directly related to them. In particular, for γ
it can be written Vub = |Vub|e−iγ . Several measurements, using different methods, constrain
the weak phase γ from the analyses of B+ → ¯D(∗)0(D(∗)0)K(∗)+ and B0 → ¯D(∗)0(D(∗)0)K(∗)0

decays, exploiting the interference between b → u and b → c transitions whose decay amplitudes
will be proportional to the Vub and Vcb elements respectively.

1.2 Phenomenology of B → DK decays

The amplitudes for the B → DK decays of interest can be expressed:

A (B+ → D
0
K+) = Vus V ∗

cb(T + C) , A (B0 → D
0
K0) = Vus V ∗

cbC ,

A (B+ → D0K+) = Vcs V ∗
ub(C̄ + A) , A (B0 → D0K0) = Vcs V ∗

ubC̄ . (2)

(3)

The T parameter will account for a tree diagram, C and C̄ forcolor-suppressed diagrams and A
for an annihilation diagram. For the neutral B → DK decays, both the diagrams for the b → c
and b → u transitions are color-suppressed and their amplitudes are described by the C and C̄
parameters respectively (see 3 for a complete treatment).

1.3 Measuring a phase

The idea of measuring a relative phase φ through the interference between two amplitudes A1

and A2e
iφ connecting the same initial and final states is based on the fact that the decay rate

between these two states is proportional to: |A1 + A2e
iφ|2 = A2

1 + A2
2 + 2A1A2 cos φ and hence

the interference term gives sensitivity to the relative phase φ.
In fig. 2 we show an interference scheme for B+ mesons decays giving sensitivity to γ. The

B+ can decay either to D0K+ through a b → c transition or to D0K+ through a b → u
transition. If both the D0 and the D0 decay to the same final state f , the study of the decay
B+ → [f ]K+ gives sensitivity to the relative phase between the two decay amplitudes. The
amplitude for b → c and b → u transitions can be written as A(b → u) ≡ |Vub|eiγAueiδu and
A(b → c) ≡ |Vcb|Ace

iδc , where Au(c) and δu(c) are the absolute value and the phase of the strong
interaction contribution to the amplitude. If the neutral D decay is also considered, a term
ADeiδD (or AD̄eiδ

D̄) has to be included. In case of B+, the interference term in the decay rate
will be proportional to cos(δ + γ), where δ = δD − δD̄ + δu − δc. A similar diagram can be



B+

D0K+

D0K+

[f ]K+

V ∗
ub

V ∗
cb

A(D0 → f)

A(D0 → f)

Figure 2: Interference between the B+
→ D0K+ (a) and the B+

→ D0K+ decays.

drawn for the CP conjugate decay (B− → [f ]K−), in this case the interference term will be
proportional to cos(δ − γ), since the strong interactions conserve CP .

The example shown in fig. 2 refers to the B+ → D0(D0)K+, but equivalent arguments
can be done for all the B+ → D(∗)0(D(∗)0)K+ and B− → D(∗)0(D(∗)0)K− as well as for the
B0 → D(∗)0(D(∗)0)K(∗)0 and B0 → D(∗)0(D(∗)0)K(∗)0 decays.

A fundamental quantity in all the measurements of γ is the parameter rB = |A(b→u)|
|A(b→c)| . Being

the absolute value of the ratio of the b → u to the b → c transition amplitudes, rB leads the
sensitivity to γ in each channel. Following the expressions for the decay amplitudes in 2, the rB

ratio for charged B → DK channels can be written as:

rB(D0K+) =
|A(B+ → D0K+)|
|A(B+ → D0K+)| =

|VcsV
∗
ub|

|VusV ∗
cb|

|C̄ + A|
|T + C| ; (4)

and, for neutral decays, as:

rB(D0K0) =
|A(B0 → D0K0)|
|A(B0 → D0K0)| =

|VcsV
∗
ub|

|VusV ∗
cb|

|C̄|
|C| . (5)

In the expressions 4 and 5, the term
|VcsV ∗

ub
|

|VusV ∗
cb
| only depends on absolute values of CKM

parameters and is know to be
√

ρ̄2 + η̄2 = 0.372 ± 0.012 4, while the terms depending on the
hadronic parameters are not easily predictable. For simple numerical evaluation, the following
assumption can be used: |C|/|T | ≈ 0.3 and |A|/|T | ≈ 0.5 5, and one would expect rCH

B ≈ 0.1 for
the charged B → DK channels and rNEUT

B ≈ 0.4 for the neutral B → DK ones.
The measurements of γ are difficult because b → u transitions are strongly suppressed with

respect to b → c ones, as described by rB ratios a and, as shown from the sketch in fig. 2, the
unknowns in any γ analysis are γ itself, the rB ratio and a strong phase δ. These are usually
called polar coordinates. Some analyses make use of the cartesian coordinates, defined in terms
of the polar coordinates as x± = rB cos(δ ± δ) and y± = rB sin(δ ± γ).

In the following, we denote r∗B and δ∗B the amplitude ratio and strong phase relative to
B+ → D̄∗0(D∗0)K+ decays. In case of a presence of a K∗ in the B decay final state, as in
the B− → D0(D̄0)K∗− channel, the natural width of the K∗ resonance has to be taken into
account and effective variables are used, following the formalism shown in 17. In case of the
polar coordinates, these variables are γ (which stays unchanged), k, rS and δS while, in case of
the cartesian coordinates, they are called xs±, ys±.

1.4 Different experimental methods

There are several methods that aim to measure γ in B → DK decays (all based on the strategy
sketched in fig. 2) that differ because of the neutral D final states f they reconstruct and

aIt has to be stressed that the parameters rB are ratios between amplitudes, the ratio between number of
events from b → u and b → c transitions will be proportional to rB

2.



consequently because of different experimental analysis techniques they use.

The Gronau London Wyler method

In the GLW method 6,7, γ is measured from the study of B decays to D0
±K final states, where

D0
± is a CP eigenstate (i.e. it is reconstructed in a CP eigenstate final state) with eigenvalues

±1, defined starting from D0 and D0, as |D0
±〉 = 1

2(|D0〉 ± |D̄0〉).
The following observables are measured:

RCP± =
Γ(B+ → D0

CP±K+) + Γ(B− → D0
CP±K−)

Γ(B+ → D0K+) + Γ(B− → D̄0K−)
= 1 + rB

2 ± 2rB cos γ cos δB

ACP± =
Γ(B+ → D0

CP±K+) − Γ(B− → D0
CP±K−)

Γ(B+ → D0
CP±K+) + Γ(B− → D0

CP±K−)
=

±2rB sin γ sin δB

RCP±

where δB is the relative strong phase between the two B decay amplitudes.

In the GLW method, four observables, ACP± and RCP± , are measured to constraint three
unknowns, γ, δ and rB. This method suffers of an irreducible four-fold ambiguity on the deter-
mination of the phases and, with the actual available statistics, is very useful in measuring rB,
but has typically a low sensitivity to γ.

The Adwood Dunietz Soni method

In the ADS method 8,9, γ is measured from the study of B → DK decays, where D mesons
decay into non CP eigenstate final states. In this method the B meson is reconstructed in final
states which can be reached in two ways: either through a favored b → c B decay followed by a
suppressed D decay (D0 → f , or D̄0 → f̄), or through a suppressed b → u B decay followed by
a favored D decay (D0 → f̄ or D̄0 → f). In this way the two amplitudes are comparable and
one can expect larger interference terms.
In the ADS method, one measures the observables:

RADS =
Γ(B+ → f̄K+) + Γ(B− → fK−)

Γ(B+ → fK+) + Γ(B− → f̄K−)
= r2

D + rB
2 + 2rBrD cos γ cos(δB + δD) (6)

AADS =
Γ(B− → fK−) − Γ(B+ → f̄K+)

Γ(B− → fK−) + Γ(B+ → f̄K+)
= rBrD[cos(δ + γ) + cos(δ − γ)]/RADS . (7)

Here δD is the relative strong phase between the favored and suppressed D decay amplitudes, and
rD is the ratio between the absolute values of their amplitudes rD = |A(D0 → f)|/|A(D0 → f̄)|.
This method is very useful in measuring rB, but normally it has very low sensitivity to γ.

The Giri Grossman Soffer Zupan method

In this method 10, usually called Dalitz method, γ is measured from the B → DK decays
with the D decaying to multi-body CP eigenstate final states. Multi-body decays are usually
described by the isobar model, in which the decay amplitude is written as a sum of amplitudes
with quasi two-body intermediate states and determined on independent neutral D samples.
This information is used in input to the Dalitz analyses (that directly extracts form data γ, rB

and δ or the polar coordinates) where the complete and rich structure of the multi-body D decay
is exploited and detectable interference terms are expected because of the presence of different
strong phases. This method is indeed very powerful and it is the one that gives the best error
on the weak phase γ.



2 Common experimental techniques

We present here the results obtained by the two B-factories experiments: Babar at the PEP-
II asymmetric-energy e+e− collider, located at the Stanford Linear Accelerator Center (USA)
and Belle at the KEK asymmetric-energy e+e− collider, located in Tsukuba (Japan). All the
analyses presented reconstruct excusively B decays and make use of some common techinques.

The B mesons are caracterized by two almost independent kinematic variables: the beam-

energy substituted mass mES(Mbc) ≡
√

(E∗2
0 /2 + ~p0 · ~pB)2/E2

0 − pB
2 and the energy difference

∆E ≡ E∗
B −E∗

0/2, where E and p are the energy and the momentum respectively, the subscripts
B and 0 refer to the candidate B and to the e+e− system respectively and the asterisk denotes
the e+e− CM frame.

Since both PEP-II and KEK e+e− collide at
√

s = M(Υ(4S)), the Υ(4S) resonance is
produced almost at rest in the e+e− center of mass frame. Given the values of the masses of
the Υ(4S) and of the B mesons, the latter have a very low residual momentum in the e+e−

center of mass frame. On the other hand, in case of e+e− → qq̄ events, with q = u, d, s, c (called
continuum events), the two quarks are produced with large momentum and for this reason, these
events have a jet-like spatial shape, different from the spherically distributed one for BB̄ events.

Several variables account for these differences and are used in the analyses to fight continuum
background, which is typycally the main source of background to these analyses.

3 Experimental results on the charged B decays

We present here the recent results on γ from Babar and Belle , using the different methods.

3.1 Analyses using the GLW method

We report on the update of the GLW analysis 12 of B− → D0K−, with D0 → K+K−, π+π−,
KSπ0 and KSω b using 383 106 BB̄ pairs collected with the Babar detector. In this analysis,
after a cut on mES and on a combination of event shape variables, the observables are extracted
using a maximum likelihood fit to the variables ∆E and the Cerenkov angle of the charged K
produced in the charged B decay.
The results obtained for the direct CP asymmetries and the ratios are the following:

RCP+ = 1.06 ± 0.10 ± 0.05 , ACP+ = 0.27 ± 0.09 ± 0.04 ,

RCP− = 1.03 ± 0.10 ± 0.05 , ACP− = −0.09 ± 0.09 ± 0.02 ,

where the first error is statistical and the second one is systematic. For the first time for a GLW
analysis, the results are extracted from data also in terms of the cartesian coordinates:

x+ = −0.09 ± 0.05 ± 0.02 ,

x− = +0.10 ± 0.05 ± 0.03 ,

r2 = +0.05 ± 0.07 ± 0.03,

where the first error is statistical and the second one is systematic.

The uncertainties on ACP± (RCP±) are smaller by a factor of 0.7 (0.9) and 0.6 (0.6) than
the previous Babar 13 and Belle 14 measurements, respectively.

bthe K−π+ mode is also reconstructed for normalization



3.2 Analyses using the ADS method

We report on the update of the ADS analysis 15 of B− → D0K−, with D0 → K−π+ using 657
106 BB̄ pairs collected with the Belle detector. In this analysis, after a cut on mES and on a
combination of event shape variables, the observables are extracted using a maximum likelihood
fit to the variable ∆E, giving the following results:

RADS = (8.0+6.3
−5.7

+2.0
−2.8)10−3 , AADS = −0.13+0.97

−0.88 ± 0.26,

where the first error is statistical and the second one is systematic.

The results obtained for RADS show that no evidence of b → u transition is found, even with
the very high statistics used. This result implies an upper limit on the ratio rB, rB < 0.19 90%
C.L. . This result on rB is consistent with the previous Belle and Babar analyses and confirms
the expectation for a small value of rB (rB ∼ 0.1) in charged B → DK decays.

3.3 Analyses using the GGSZ method

Both the Babar and Belle collaboration have presented at this conference new results using
Dalitz techinque, that strongly improve the precision on the determination of γ.

We first report on a new Dalitz analysis 16 of B− → D0K− and B− → D∗0K−, that for the
first time uses neutral D reconstructed into the final state D0 → KsK

+K− and on the update
of the Dalitz analysis of B− → D0K−, B− → D∗0K− and B− → D0K∗−, with D0 → KSπ+π−

using 383 106 BB̄ pairs collected with the Babar detector. In this analysis, mES , ∆E and
a combination of event shape variables are used in the maximum likelihood fit to extract the
number of signal and background events and then a CP fit is perfomed to extract the cartesian
coordinates for the three channels, B− → D0K−, B− → D∗0K− and B− → D0K∗−. In the CP
fit, the D Dalitz distribution, for D0 → KSπ+π− and D0 → KsK

+K−, as they are determined
on independent data samples, are used as an input. The results for the cartesian coordinates are
shown in tab. 1, for the three analyzed channels (in the tables, the symbol D̃0 indicates either
a D0 or a D̄0). The first error is statistical, the second is experimental systematic uncertainty
and the third is the systematic uncertainty associated with the Dalitz models.

Parameters B−
→ D̃0K− B−

→ D̃∗0K− B−
→ D̃0K∗−

x− , x∗
− , xs− 0.090 ± 0.043 ± 0.015 ± 0.011 −0.111 ± 0.069 ± 0.014 ± 0.004 0.115 ± 0.138 ± 0.039 ± 0.014

y− , y∗
− , ys− 0.053 ± 0.056 ± 0.007 ± 0.015 −0.051 ± 0.080 ± 0.009 ± 0.010 0.226 ± 0.142 ± 0.058 ± 0.011

x+ , x∗
+ , xs+ −0.067 ± 0.043 ± 0.014 ± 0.011 0.137 ± 0.068 ± 0.014 ± 0.005 −0.113 ± 0.107 ± 0.028 ± 0.018

y+ , y∗
+ , ys+ −0.015 ± 0.055 ± 0.006 ± 0.008 0.080 ± 0.102 ± 0.010 ± 0.012 0.125 ± 0.139 ± 0.051 ± 0.010

Table 1: CP -violating parameters x
(∗)
±

, y
(∗)
±

, xs±, and ys±, as obtained from the CP fit.

Using a frequentist analysis, the experimental results for x
(∗)
± , y

(∗)
± , xs±, and ys± are inter-

preted in terms of the weak phase γ, the amplitude ratios rB, r∗B, and rS , and the strong phases
δB, δ∗B, and δS , giving γ = (76 ± 22 ± 5 ± 5)◦ (mod 180◦), rB = 0.086 ± 0.035 ± 0.010 ± 0.011,

r∗B = 0.135 ± 0.051 ± 0.011 ± 0.005, krS = 0.163+0.088
−0.105 ± 0.037 ± 0.021 δB =

(

109+28
−31 ± 4 ± 7

)◦

(mod 180◦), δ∗B =
(

−63+28
−30 ± 5 ± 4

)◦
(mod 180◦), and δS =

(

104+43
−41 ± 17 ± 5

)◦
. The first error

is statistical, the second is the experimental systematic uncertainty and the third reflects the
uncertainty on the D decay Dalitz models. The results for γ and the ratios rB, r∗B and rS are
shown in fig. 3.

We also report on the update of the Dalitz analysis 19 of B− → D0K− and B− → D∗0K−

(D∗0 → D0π0), with D0 → KSπ+π− using 635 106 BB̄ pairs collected with the Belle detector.
In this analysis, Mbc, ∆E and a combination of event shape variables are used in the maximum
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Figure 3: [Babar Dalitz analysis] α = 1 − CL as a function of γ (left plot) and of rB , r∗B and rS (right
plot) for B−

→ D̃0K−, B−
→ D̃∗0K−, and B−

→ D̃0K∗− decays separately, and their combination, including
statistical and systematic uncertainties and their correlations. The dashed (upper) and dotted (lower) horizontal

lines correspond to the one- and two-standard deviation intervals, respectively.

likelihood fit to extract the number of signal and background events and then a CP fit is perfomed
to extract the cartesian coordinates for the two channels, B− → D0K−, B− → D∗0K− (with
D∗0 → D0π0). In the CP fit, the D Dalitz distribution for D0 → KSπ+π−, as it is determined
on independent data samples, is used as an input. The results are shown in tab. 2, where the
first error is statistical and the second is experimental systematic uncertainty. The uncertainty
associated with the Dalitz model is not shown and it is assumed to be equal to the one evaluated
in the previous analysis by Belle collaboration 18.

Parameter B− → D̃0K− B− → D̃∗0K−

x− +0.105 ± 0.047 ± 0.011 +0.024 ± 0.140 ± 0.018
y− +0.177 ± 0.060 ± 0.018 −0.243 ± 0.137 ± 0.022
x+ −0.107 ± 0.043 ± 0.011 +0.133 ± 0.083 ± 0.018
y+ −0.067 ± 0.059 ± 0.018 +0.130 ± 0.120 ± 0.022

Table 2: CP -violating parameters x
(∗)
± and y

(∗)
± , as obtained from the CP fit.

Using a frequentist analysis, the experimental results for x
(∗)
± and y

(∗)
± are interpreted in

terms of the weak phase γ, the amplitude ratios rB, r∗B and the strong phases δB, δ∗B, giving γ =
(

76+12
−13 ± 4 ± 9

)◦
(mod 180◦), δB =

(

136+14
−16 ± 4 ± 23

)◦
(mod 180◦), δ∗B =

(

343+20
−22 ± 4 ± 23

)◦

(mod 180◦), rB = 0.16 ± 0.04 ± 0.01 ± 0.05 and r∗B = 0.21 ± 0.08 ± 0.02 ± 0.05. The first error
is statistical, the second is the experimental systematic uncertainty and the third reflects the
uncertainty on the D decay Dalitz model. It can be noticed that this analysis finds slightly
higher values for the rB and r∗B ratios with respect to the Babar analysis, which explains the
smaller statistical errors on γ, also if the precision on the cartesian coordinates is similar. The
results for γ and the ratios rB and r∗B are shown in fig. 4

4 Experimental results on the neutral B decays

Lately, within the Babar collaboration, there have been efforts to constrain γ and related quan-
tities from the study of neutral B → DK decays. As already discussed, the rB ratios in these
channels are expected to be higher than in the charged ones, hence giving higher sensitivity to
γ.
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Figure 4: [Belle Dalitz analysis] Projections of confidence regions for the B−
→ D0K− (left plot) and B−

→

D∗0K− (right plot) mode onto the (rB , γ) and (r∗B , γ) planes respectively. Contours indicate projections of one,
two and three standard deviation regions.

We first report on a new Dalitz analysis 21 of B0 → D0K∗0, with K∗0 → K+π− and
D0 → KSπ+π− using 371 106 BB̄ pairs collected with the Babar detector. In this analysis, mES

and a combination of event shape variables are used in the maximum likelihood fit to extract
the number of signal and background events and then a CP fit is perfomed. A likelihood scan in
polar coordinates (γ, δ0

S , r0
S) is extracted from data and combined with an external information

on r0
S

20. The results obtained are shown in tab. 3, where the first error is statistical, the second
is the experimental systematic uncertainty and the third reflects the uncertainty on the D decay
Dalitz model.

Parameters

γ [◦] 162 ± 55 ± 1.6 ± 6.5 (mod 180◦)
δ0
S [◦] 62 ± 55 ± 3.1 ± 15.8 (mod 180◦)

r0
S < 0.55 95 % probability

Table 3: Results for γ, δ0
S and r0

S , as obtained from the CP fit.

We also report on a new time-dependent Dalitz plot analysis 22 of B0 → D−K0π+ using 347
106 BB̄ pairs collected with the Babar detector. This analysis studies the interference between
b → u and b → c transitions through the B mesons mixing and hence gives sensitivity to the
combination of CKM weak phases 2β + γ. In this analysis, mES , ∆E and a combination of
event shape variables are used in the maximum likelihood fit to extract the number of signal
and background events and then a time-dependent fit to the neutral B Dalitz distribution is
performed to extract 2β + γ. In this fit, the ratio r0

B is assumed to be r0
B = 0.3 and the effect

of this assumption is taken into account in the systematics evaluation by varying this ratio of
±0.1. The result obtained for 2β + γ is the following:

2β + γ = (83 ± 53 ± 20)◦ (mod 180◦),

where the first error is statistical and the second one is systematic.

5 Combined results and conclusions

From all the available measurements, including the new ones presented here, the knowledge
of γ, according to the combination performed by the UTfit collaboration, is γ = (80 ± 13)◦.



The combined results obtained for the other quantities are rB = 0.10 ± 0.02, r∗B = 0.09 ± 0.04,
rS = 0.13 ± 0.09, r0

S < 0.55 95 % probability and 2β + γ = (88 ± 29)◦.
In conclusion both the Babar and Belle collaboration have made enormous efforts to con-

straint the CKM angle γ and related quantities using many methods in different channels, leading
to a precision in the determination that was not expected to be accessible at the B-factories
experiments.
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