

Outline

- CP violation and CKM matrix
- B factories datasets
- Measurements of γ/ϕ_3 : experimental techniques
- Gronau London Wyler method results
- Atwood Dunietz Soni method results
- Giri Grossman Soffer Zupan (Dalitz) method results
- combining all the results

The CKM matrix and the Unitarity Triangle

In the SM, CP violation arises from an irreducible phase in the CKM matrix

the CKM angle γ/ϕ_3

Wolfenstein parametrization:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^5)$$

$$\lambda \sim 0.22, A \sim 0.8$$

$$\gamma/\phi_{3} = \arg\{-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\} \qquad \frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \qquad \frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{c$$

In Wolfenstein parametrization, $V_{ub} = \sqrt{\rho^2 + \eta^2} e^{-i\gamma} \rightarrow \gamma/\phi_3$ is the phase of V_{ub}^* γ/ϕ_3 measured in the B \rightarrow DK system, in the interference between b \rightarrow c and b \rightarrow u transitions

measuring a phase

CP violation detectable when there are two paths to reach the same final state. Interference in the B \rightarrow DK system allows the determination of γ/ϕ_3

$$|A_{1} + A_{2}e^{i\phi}|^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\phi)$$

$$\overline{D}^{0}K^{+} + A(\overline{D}^{0} \rightarrow f)$$

$$V_{cb}$$

$$F^{+} = V_{cb}$$

$$[f]K^{+} = I \qquad \text{interference}$$

$$\propto \cos(\delta + \gamma)$$

Sensitivity to γ/ϕ_{3} is driven by the ratio $r_{p} = |A(b \rightarrow u)|/|A(b \rightarrow c)|$ (channel-dependent)

cartesian coordinates $x_{\pm} = r_B \cos(\delta \pm \chi)$

$$y_{\pm} = r_B \sin(\delta \pm \gamma)$$

 $(\infty \cos(\delta - \gamma) \text{ for } B^{-})$

where to look

 γ/ϕ_3 weak phase between b \rightarrow c and b \rightarrow u transition. In the **B\rightarrowDK system**

the r_B ratios

Sensitivity to γ/ϕ_3 in each channel driven by the ratio $\mathbf{r}_{\mathbf{B}} = |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{u})| / |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{c})|$

$$r_{B}(D^{0}K^{+}) = \frac{|A(B^{+} \to D^{0}K^{+})|}{|A(B^{+} \to \overline{D^{0}}K^{+})|} = \frac{|V_{cs}V_{ub}^{*}|}{|V_{us}V_{cb}^{*}|} \frac{|\bar{C} + A|}{|T + C|}$$

$$r_{B}(D^{0}K^{0}) = \frac{|A(B^{0} \to D^{0}K^{0})|}{|A(B^{0} \to \overline{D^{0}}K^{0})|} = \frac{|V_{cs}V_{ub}^{*}|}{|V_{us}V_{cb}^{*}|} \frac{|\bar{C}|}{|C|}$$
Hadronic elements, complex quantities. Channel-dependent!
$$R_{b} \sim 0.37$$

$$R_{b} \equiv \frac{|V_{ud}V_{ub}^{*}|}{|V_{cd}V_{cb}^{*}|} = \sqrt{\bar{\varrho}^{2} + \bar{\eta}^{2}} = (1 - \frac{\lambda^{2}}{2})\frac{1}{\lambda} \left|\frac{V_{ub}}{|V_{cb}}\right|$$

For the B⁺ \rightarrow D^{(*)0}K⁺, the r_B ratio is of the order ~0.1 (in amplitude!) For the B⁰ \rightarrow D^{(*)0}K^{(*)0}, the r_B ratio is expected to be of the order ~0.4 **Need to be measured!**

Notice: In the case of $B \rightarrow DK^*$ decays, the r_s ratio is used instead, that takes into account that the K^* is a naturally broad resonance

status of the measurements

constraints from angles measurements (LP2007)

 γ/ϕ_3 is much less precisely determined, with respect to α and β (same remark for $2\beta+\gamma$). Measurements of γ/ϕ_3 are difficult, because we look for small effects.

Actual knowledge comes from the combination of several methods (GLW, ADS, GGSZ) and several channels.

The b→u transitions are strongly suppressed ($r_B = |A(b \rightarrow u)|/|A(b \rightarrow c)|$).

B-factories

e⁺e⁻ colliders with asymmetric beam energies @Y(4s) for B meson pairs production: PEP II at SLAC (U.S.A.) and KEK in Tsukuba (Japan).

General purpose detectors: Belle and Babar

As of 2008/02/21 00:00

Experimental measurement technicues

Exclusive reconstruction of B decays. Two sources of background: from BB events and from continuum events ($e^+e^- \rightarrow q\bar{q}$, with q=u,d,s,c).

Two almost-independent kinematic variables to characterize the B mesons:

$$m_{ES}(M_{bc}) = \sqrt{(s/2 + \vec{p}_B \vec{p}_{ee})^2 / E_{ee}^2 - \vec{p}_B^2} \int_{m_{ee}}^{m_{ee}} m_{ES} \int_{m_{ee}}^{m_{ee}} M_{ES} \int_{m_{ee}}^{m_{ee}} \Delta E = E_B^* - \sqrt{s/2} \int_{m_{ee}}^{m_{ee}} \sqrt{s/2} \int_{m_{ee}}^{m_{ee}} M_{ES} \int_{m_{ee}}^{m_{ee$$

 $(E_{B(ee)}, p_{B(ee)}) = 4$ -momentum of the reconstructed B or of the e⁺e⁻ initial state in the laboratory frame. The * denotes the e⁺e⁻ center of mass (CM) frame

different methods

Different methods proposed to study the $B \rightarrow D^0 K$ decays,

• GLW method:

D⁰ mesons reconstructed in two-body CP-eigenstate final states: K^+K^- , $\pi^+\pi^-$ (CP even) $K_s\pi^0$, $K_s\omega$ (CP odd)

• ADS method:

 D^0 mesons reconstructed in non CP-eigenstate final states: $K^{\mbox{-}}\pi^{\mbox{+}}, K^{\mbox{-}}\pi^{\mbox{+}}\pi^0$

GGSZ (Dalitz) method:

 D^0 mesons reconstructed in three-body CP-eigenstate final states: $K_{_s}\pi^{_+}\pi^{_-},~K_{_s}K^{_+}K^{_-},~\pi^{_+}\pi^{_-}\pi^0$

In the following I will concentrate on new/updated results

the one that gives the best error on γ/φ₃

charged B: GLW results

Gronau, London, Wyler - Phys.Rev.Lett. B265(1991) 172

Neutral D mesons reconstructed in CP-eigenstate final states (CP even: K⁺K⁻, $\pi^{+}\pi^{-}$ and CP odd K $_{s}\pi^{0}$, K $_{s}\omega$)

-1

charged B: GLW results

arXiv:0802.4052

Update of the GLW analysis $B^{-} \rightarrow D^{0}K^{-}$, with $D^{0} \rightarrow K^{+}K^{-}$, $\pi^{+}\pi^{-}$, $K_{s}\pi^{0}$, $K_{s}\omega$ and $K^{-}\pi^{+}$ (for normalization) on **382M** of BB pairs

 \circ cut on $m_{_{\rm FS}}$ and event shape variables

 ${\mbox{\circ}}$ extended maximum likelihood fit to the $\Delta {\mbox{E}}$ and Cerenkov distribution

charged B: ADS results

Atwood, Dunietz, Soni - Phys.Rev.Lett. 78, 3257 (1997) (hep-ph/9612433)

Neutral D mesons reconstructed in non CP-eigenstate final states $f=K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}$

charged B: ADS results

PRELIMINARY

Update of the ADS analysis $B^- \rightarrow D^0 K^-$, with $D^0 \rightarrow K^- \pi^+$ on **657M** of BB pairs

PRELIMINARY

- \circ cut on M_{bc} and event shape variables
- ullet extended maximum likelihood fit to the Δ E distribution

Giri, Grossman, Soffer, Zupan – Phys.Rev. D68 (2003) 054018 (hep-ph/0303187)

Neutral D mesons reconstructed in three-body CP-eigenstate final states (typically $D^0 \rightarrow K_s \pi^+ \pi^-$)

The complete structure (amplitudes and strong phases) of the D⁰ decay in the phase phase space is obtained on independent data sets D^{0} – (and used as input in the analysis.

These analyses make use of the

 π

1.5

0.5

cartesian coordinates:

$x_{\pm} = r_B \cos(d)$	$\delta \pm \gamma)$, $y_{\pm} \!=\! r_{B}$	$\sin(\delta \pm \gamma)$
-------------------------	--	---------------------------

	$D_{K\pi\pi}^{(*)}K^{(*)}x_{+}$	Averages HFAG	$D_{K\pi\pi}^{(*)}K^{(*)}y_{+}^{}A$	verages HFAG ICHEP 2006 PRELIMINARY
alitz -K	BaBar ICHEP 2006 preliminary Belle	$\begin{array}{c} -0.072 \pm 0.056 \pm 0.014 \pm 0.029 \\ -0.135 \substack{+0.089 \\ -0.070} \pm 0.017 \pm 0.051 \end{array}$	A BaBar ICHEP 2006 preliminary Belle	$\begin{array}{c} \text{-0.033} \pm 0.066 \pm 0.007 \pm 0.018 \\ \text{-0.085} \substack{+0.090\\-0.086} \pm 0.009 \pm 0.0066 \end{array}$
	Average HFAG correlated average	-0.097 ± 0.045	Average HFAG correlated average	-0.051 ± 0.053
¥-z	BaBar ICHEP 2006 preliminary	0.084 ± 0.088 ± 0.015 ± 0.0)8	BaBar ICHEP 2006 preliminary	0.096 ± 0.111 ± 0.032 ± 0.017
Dalit	Belle PRD 73, 112009 (2006)	0.032 ^{+0.120} _{-0.116} ± 0.004 ± 0.049	Belle PRD 73, 112009 (2006)	0.008 +0.137 ± 0.011 ± 0.074
۵	Average HFAG correlated average	0.067 ± 0.071	Average HFAG correlated average	0.061 ± 0.088
¥	BaBar hep-ex/0507101	-0.070 ± 0.230 ± 0.130 ± 0.030	BaBar ∠ hep-ex/050710	-0.010 ± 0.320 ± 0.180 ± 0.050
Dailitz	Belle PRD 73, 112009 (2006)	-0.105 +0.177 ± 0.006 ± 0.088	Belle PRD 73, 112009 (2006)	++ -0.004 ^{+0.164} _{-0.156} ± 0.013 ± 0.095
Ģ	Average	-0.094 ± 0.144	HFAG correlated average	-0.007 ± 0.146

	$\mathbf{D}_{\mathbf{K}\pi\pi}^{(*)}\mathbf{K}^{(*)}\mathbf{x}$	Verages HFAG	$D_{K\pi\pi}^{(*)}K^{(*)}$ y Averages PREL	AG P 2006 MINARY
¥	BaBar ICHEP 2006 preliminary	$0.041 \pm 0.059 \pm 0.018 \pm 0.011$	BaBar ¥ ICHEP 2006 preliminary 0.056 ± 0.071 ± 0.007	± 0.02
Dalitz	Belle PRD 73, 112009 (2006)	$0.025 ^{+0.072}_{-0.080} \pm 0.013 \pm 0.068$	E Belle 0.170 ^{+0.093} ± 0.016 PRD 73, 112009 (2006)	± 0.04
۵	Average HFAG correlated average	0.045 ± 0.047	Average 0.093	± 0.05
¥	BaBar ICHEP 2006 preliminary	-0.106 ± 0.091 ± 0.020 ± 0.009	BaBar -0.019 ± 0.096 ± 0.022	± 0.01
Dalitz	Belle PRD 73, 112009 (2006)	$\text{-0.128}^{+0.167}_{-0.146} \pm 0.023 \pm 0.071$	Belle -0.339 +0.172 ± 0.027	± 0.05
0	Average HFAG correlated average	-0.110 ± 0.080	Average -0.101	± 0.08
¥	BaBar +	$-0.200 \pm 0.200 \pm 0.110 \pm 0.030$	BaBar 0.260 ± 0.300 ± 0.160	± 0.03
litz		-0.784 $^{+0.249}_{-0.295}\pm0.029\pm0.097$	Belle -0.281 ±0.440	± 0.08
°,	Average 5 HFAG correlated average	-0.480 ± 0.173	Average -0.056	± 0.25
-1	-0.8 -0.6 -0.4 -0.2 0	0.2 0.4 0.6 0.8 1	-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8) 1

Dalitz plane

GGSZ Dalitz method best error on γ/ϕ_3

PRELIMINARY

Update of the Dalitz analysis of $B^- \rightarrow D^0 K^-$, $D^{*0} K$ and $D^0 K^{*-}$ with $D^0 \rightarrow K_s \pi^+ \pi^-$

and, for the first time, $D^{\circ} \rightarrow K_{s}K^{+}K^{-}$ (no $D^{\circ}K^{*-}$). Also reconstructed control samples: $B^{-} \rightarrow D^{\circ}\pi^{-}$, $D^{*\circ}\pi^{-}$ and $D^{\circ}a_{1}^{-}$

17

Analysis performed on **383M** of BB pairs

 ${\scriptstyle \bullet}$ m_{_{\rm ES}}, \Delta E and shape variables are used in a maximum likelihood fit to discriminate between signal and background

 ${\ }$ D^0 Dalitz distributions determined on independent data samples and used as an input in the fit

• CP fit for extraction of cartesian coordinates for DK, D*K and DK*

PRELIMINARY

Results for the cartesian coordinates

(statistical, systematic and model errors included)

<u> </u>	Parameters	$B^- ightarrow { ilde D}^0 K^-$	$B^- \to \tilde{D}^{*0} K^-$	$B^- \to \tilde{D}^0 K^{*-}$
	x_{-}, x_{-}^{*}, x_{s-}	$0.090 \pm 0.043 \pm 0.015 \pm 0.011$	$-0.111 \pm 0.069 \pm 0.014 \pm 0.004$	$0.115 \pm 0.138 \pm 0.039 \pm 0.014$
	$y_{-} \;,\; y_{-}^{*} \;,\; y_{s-}$	$0.053 \pm 0.056 \pm 0.007 \pm 0.015$	$-0.051 \pm 0.080 \pm 0.009 \pm 0.010$	$0.226 \pm 0.142 \pm 0.058 \pm 0.011$
	x_+ , x_+^* , x_{s+}	$-0.067\pm 0.043\pm 0.014\pm 0.011$	$0.137 \pm 0.068 \pm 0.014 \pm 0.005$	$-0.113 \pm 0.107 \pm 0.028 \pm 0.018$
	$y_+ \;,\; y_+^* \;,\; y_{s+}$	$-0.015\pm0.055\pm0.006\pm0.008$	$0.080 \pm 0.102 \pm 0.010 \pm 0.012$	$0.125 \pm 0.139 \pm 0.051 \pm 0.010$
, ,			$\gamma/\phi_3 = (76^{+23}_{-24})^{a}$	$P(mod. 180^{\circ})$

 $\gamma/\phi_3 = (76^{+23}_{-24})^o (mod.180^o)$ $r_B(DK) = 0.086 \pm 0.035$ $r_B(D*K) = 0.135 \pm 0.051$ $r_S(DK^*) = 0.181^{+0.100}_{-0.118}$

18

BĒ

PRELIMINARY

-Update of the Dalitz analysis of $B^- \rightarrow D^0 K^-$ and $D^{*0} K$, with $D^0 \rightarrow K_{c} \pi^+ \pi^-$ and $D^{*0} \rightarrow D^0 \pi^0$.

Analysis performed on **635M** of BB pairs

• $M_{_{
m back}},\Delta$ E and shape variables are used in a maximum likelihood fit to discriminate between signal and background

- D⁰ Dalitz structure used as an external input
- CP fit for extraction of cartesian coordinates for DK and D*K

PRELIMINARY

(seal 300 [∞] 250 350 0.35 0.3 0.25 $B^{\pm} \rightarrow DK^{\pm}$ 200 0.2 150 (\mathbf{f}) 0.15 100 0.1 50 0.05 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 35 0 ϕ_3 (degrees) ϕ_2 (degrees) (seal be) [©] 250 0.35 $B^{\pm} \rightarrow D^{*} K^{\pm}$ 0.3 200 + 150 0.15 100 0.1 50 0.05 n 50 100 150 200 250 300 35 0 50 100 150 200 250 300 350 0 φ₂ (degrees) φ₂ (degrees)

Results for the cartesian coordinates (errors are statistical and experimental systematics, model error not included):

Parameter	$B^+ \to DK^+$	$B^+ \to D^* K^+$
x_{-}	$+0.105\pm 0.047\pm 0.011$	$+0.024\pm 0.140\pm 0.018$
y_{-}	$+0.177\pm0.060\pm0.018$	$-0.243 \pm 0.137 \pm 0.022$
x_+	$-0.107\pm 0.043\pm 0.011$	$+0.133 \pm 0.083 \pm 0.018$
y_+	$-0.067\pm0.059\pm0.018$	$+0.130 \pm 0.120 \pm 0.022$

model error estimate is the same as in previous analysis

 $\gamma/\phi_3 = (76^{+12}_{-13} \pm 4 \pm 9)^o (mod. 180^o)$ $r_B(DK) = 0.16 \pm 0.04 \pm 0.01 \pm 0.05$ $r_B(D*K) = 0.21 \pm 0.08 \pm 0.02 \pm 0.05$

> $\delta(DK) = (136^{+14}_{-16} \pm 4 \pm 23)^{o}$ $\delta(D^{*}K) = (343^{+20}_{-22} \pm 4 \pm 23)^{o}$ (mod. 180^o) 20

neutral B: new results on y

PRELIMINARY

Analysis of $B^0 \rightarrow D^0 K^{*0}$, with $D^0 \rightarrow K_{c} \pi^+ \pi^-$ and $K^{*0} \rightarrow K^- \pi^+$. The charge of the K

from the K* tags the flavor of the B⁰, no time-dependent analysis is needed. First analysis extracting γ from neutral B⁰ \rightarrow D⁰K^{*0} decays. Analysis performed on **371M** of BB pairs

 ${\scriptstyle \bullet}$ ${\rm m}_{_{\rm ES}}$ and shape variables are used in a maximum likelihood fit to discriminate between signal and background

- ullet D $^{
 m 0}$ Dalitz distribution used as an input in the fit
- CP fit for extraction of a 3D likelihood for $\gamma,r_{_{S}},\delta.$

 $\gamma/\phi_3 = (162 \pm 56)^o (mod. 180^o)$ $r_s(D^0 K^{*0}) < 0.55 @95\% prob.$

Combined with the likelihood for r_s from B.Aubert et al (Babar coll.) Phys.Rev. D74, 031101 (2006)

neutral B: new results on 2β -Fy

arXiv:0712.3469, accepted by PRD

Time dependent Dalitz plot analysis of $B^0 \rightarrow D^- K^0 \pi^+$.

Three-body B decay. Interference between $b \rightarrow u$ and $b \rightarrow c$ transitions

through the mixing: sensitivity to $2\beta + \gamma$. Analysis performed on **347M** of BB pairs

 ${\scriptstyle \bullet}$ m_{_{\rm ES}}, \Delta E and shape variables are used in a maximum likelihood fit to discriminate between signal and background

time dependent fit to the B^0 Dalitz distribution assuming r_=0.3

combining them all

Babar + Belle, from the combination of all the measurements $\sum_{x=10^3}$

conclusions

- $_{\bullet}$ both in Belle and Babar efforts to constrain $\gamma/\phi_{_3}$ in many ways
- $r_{_{\rm B}}$ ratios confirmed to be small (~ 0.1)
- $_{\rm B}$ despite the small values of the $r_{_{\rm B}}$ ratios, $~\gamma/\phi_{_3}$ is now known with a precision (13°) that was not expected to be accessible at the B-factories
- the actual error comes from the combination of many methods in several channels

Backup slides

CPV in the SM

Field theory that describes strong, weak and electromagnetic interactions in terms of gauge group theories, starting from the elementary particles.

strong	gau	lge group		electroweak
interactions	SU(3)	$\mathbf{x} SU(2)$	$\mathbf{x} U(1)$	interactions
color symm	etry	isospin	hypercha	rge
(strong intera	ctions)	symmetry	svmmet	rv
6 leptons (antiplepton	s), in three fa	(weak) amilies	$\left(egin{array}{c} u_e \\ e \end{array} ight)$, ($\left(egin{array}{c} u_\mu \\ \mu \end{array} ight) \ , \ \left(egin{array}{c} u_ au \\ au \end{array} ight)$
6 quarks (antiquarks), in three families $\begin{pmatrix} u \\ d \end{pmatrix}$, $\begin{pmatrix} c \\ s \end{pmatrix}$, $\begin{pmatrix} t \\ b \end{pmatrix}$			$\left(\begin{array}{c} c \\ s \end{array} ight) \ , \ \left(\begin{array}{c} t \\ b \end{array} ight)$	
Parity : $P(t, \vec{x}) =$ Charge of	$(t, -\vec{x})$	<mark>n:</mark> particle –	 antiparticl 	e

CP violation discovered in 1964 in the K rare decays and then confirmed by the B-factories results

CIII the diagrams

$D^0 \rightarrow K_s \pi^+\pi^-$ amplitude fit (Belle)

Quasi two-body model is used as a baseline. K-matrix for systematics test.

Intermediate state	Amplitude	Phase, °
$K_s \sigma_1$	1.56±0.06	214±3
K _s ρ(770)	1 (fixed)	0 (fixed)
K _s ω	0.0343±0.0008	112.0±1.3
$K_{s} f_{0}(980)$	0.385±0.006	207.3±2.3
$K_s \sigma_2$	0.20±0.02	212±12
$K_{s} f_{2}(1270)$	1.44±0.04	342.9±1.7
$K_{s} f_{0}(1370)$	1.56±0.12	110±4
K _s ρ(1450)	0.49±0.08	64±11
K [*] (892)⁺π⁻	1.638±0.010	133.2±0.4
K*(892) ⁻ π ⁺	0.149±0.004	325.4±1.3
K*(1410)+π-	0.65±0.05	120±4
К*(1410)-П+	0.42±0.04	253±5
K [*] ₀ (1430) ⁺ π ⁻	2.21±0.04	358.9±1.1
К [*] ₀ (1430)-п+	0.36±0.03	87±4
K [*] ₂ (1430)+π-	0.89±0.03	314.8±1.1
К* ₂ (1430)-п+	0.23±0.02	275±6
К*(1680)+П-	0.88±0.27	82±17
K*(1680)-π+	2.1±0.2	130±6
Nonresonant	2.7±0.3	160±5

$B^- \rightarrow D^{(*)}K^-$ signal (Belle)

- M_{bc}>5.27 GeV/c²
- 144.9 < ΔM < 145.9 MeV/c² (B \rightarrow D*K only)
- Continuum rejection variables $\cos\theta_{thr}$, "virtual calorimeter" Fisher discriminant:

 $|\cos\theta_{thr}| < 0.8$, F>-0.7 in M_{bc}, ΔE fit to determine background composition.

Whole range is used in Dalitz fit, included into likelihood.

756 events, 29% background ($B \rightarrow DK$). In "clean" signal region

149 events, 20% background ($B \rightarrow D^*K$). $(|\cos \theta_{thr}| < 0.8, F > -0.7)$

(x_{\pm}, y_{\pm}) fit results (Belle)

Fit parameters are $X_{\pm} = r_B \cos(\pm \varphi_3 + \delta)$ and $Y_{\pm} = r_B \sin(\pm \varphi_3 + \delta)$

[preliminary]

Unbinned maximum likelihood fit with event-by-event background treatment

 $(\Delta E, M_{bc}, /\cos\theta_{thr}), F$ included into likelihood)

φ_{3} constraints

Stat. confidence level of CPV is (1-5.5.10⁻⁴) or 3.50 !