

Björn Penning University of Freiburg

XLIIId Rencontres de Moriond, March 01-08 2008

Introduction $H \rightarrow WW \rightarrow ll$

Physics Department University of Freiburg

- Main production via Gluon Fusion and Associated Production, dominant decay: $- m_{\mu} < 135 \text{ GeV}: b\bar{b}$
 - − m_{H} >135 GeV: *WW*→*ll* decay
- Search strategy:
 - two high p_T leptons, opposite charge
 - high missing transverse energy (v)
- Main background sources for $H \rightarrow WW \rightarrow ll$: - WW production (high Higgs masses) - W+jet/\gamma (low Higgs masses)
- $H \rightarrow WW \rightarrow ll$ highest sensitivity for $m_{H} = 160 \text{GeV}$
- Major channels: $\mu\mu$, $e\mu$, ee, exploiting τ
- Presented here: $H \rightarrow WW \rightarrow ee/\mu t$

- Tau = narrow isolated jet with low track and π^0 multiplicity
- Taus decay inside detector:
 - $-BR(\tau \rightarrow e/\mu + v v) \sim -17\%$
 - $BR(\tau \rightarrow hadrons + v) \sim 65\%$

 Final states with τ initially neglected in sensitivity studies

Björn Penning

• DØ uses one Neural Network per tau type to discriminate taus from jets

• Electrons picked up not selected by default EM-ID → recover efficiency

- Remove dominant backgrounds ($Z/\gamma^* \rightarrow ee$ dominates) by applying one-dimensional selection requirements ('Cuts')
- Using multivariate techniques to maximize separation power between signal and background ($WW \rightarrow ll$ and $W+jet/\gamma$ most difficult to separate)
 - $\mu \pi_{h} \text{ analysis: } 2 \text{ separate Likelihoods/} \tau \text{ type } (5 \& 6 \text{ input variables}) \\ ee \text{ analysis: } \text{Neural Network}$ (8 input variables)

- No excess in data seen above the background expectation
- Set limits on the $\sigma \times BR(H \rightarrow WW \rightarrow ee/\mu\tau_h)$
- $\mu + \tau_{h}$ channel less sensitive than *ee* channel

- DØ analysis has similar sensitivity as CDF
- Results combined with $\mu \mu/e\mu$ channel

 Adding more data and improvements in analysis techniques will further increase the sensitivity, updated results soon available

Backup Slides

XLIIId Rencontres de Moriond, March 01-08 2008

Higgs Production at the Tevatron

Physics Department University of Freiburg

• Cross Section Higgs production ($100 < m_{H} < 200 \text{ GeV}$):

-
$$\sigma(g g \rightarrow H) \approx 2 - 0.1 \ pb$$

- $\sigma(q \overline{q} \rightarrow WH) \approx 0.25 - 0.02 \ pb$

Björn Penning

Limits x SM

$H \rightarrow WW \rightarrow \mu \pi_h$

Cut	Data	$m_{\rm H} = 160 {\rm GeV}$ Tot. Exp. Bkgd	$H \to WW$
Preselection $\Delta \phi(\mu, \tau)$	$\begin{array}{r} 1749.00 \pm 41.82 \\ 30.00 \pm 5.48 \end{array}$	$\begin{array}{r} 1719.19 \pm 33.58 \\ 21.66 \pm 2.74 \end{array}$	$0.20 \\ 0.11$
Final Sel. incl.	2.00 ± 1.41	4.63 ± 1.22	0.05
Final Sel. excl.	3.00 ± 1.73	1.78 ± 0.68	0.01

$H \rightarrow WW \rightarrow ee$

Sel. Req.	Data	Sum Bkgd	$H \to WW \to ee$
Preselection Final Selection	$\begin{array}{r} 45017.99 \pm 212.17 \\ 17.00 \pm 4.12 \end{array}$	$\begin{array}{c} 45169.85 \pm 101.76 \\ 15.49 \pm 1.71 \end{array}$	$\begin{array}{c} 0.71 \\ 0.46 \end{array}$

