

Measurement of the Z P_T distribution and its relevance for the W mass measurement at D0

Tim Andeen
Northwestern University

Rencontres de Moriond EW 2008

Tim Andeen

Overview of a W Mass Measurement

No $P_T(W)$ $P_T(W)$ included Detector Effects added

- M_W measurement relies on the theoretical description of boson production P_T spectrum.
- Measurement using the $P_T(e)$ distribution most affected by $P_T(W)$.
- Arbitrary linear scale dN/dm_T (GeV)
- Detector calibrated and tuned using Z->ee data.
 - Tuning then scaled down to W mass.
 - Any difference between Z and W events not accounted for will lead to inaccuracy.

W/Z Production at the Tevatron

- W/Z boson produced predominately by $q\bar{q}$ at the Tevatron.
- At leading order W/Z $P_T = 0$.

• At NLO W/Z $\langle p_T \rangle \sim 5$ GeV. Need gluon resummation to describe boson p_T :

Tim Andeen

Soft Gluon Resummation

The differential cross section for boson production is

$$\frac{d^2\sigma}{dP_T^2} = \sum_{ij} \int dx_1 dx_2 f_i(x_1) f_j(x_2) \frac{d^2\sigma(ij \to V)}{dP_T^2}$$

• We use the RESBOS generator (PRD **56**, 5558 (1997)) to model the boson P_T spectrum. This relies on the Collins, Soper, Sterman formalism (Nucl. Phys. **B250**, 199 (1985)), where the parton level cross section is

$$\frac{d^2\sigma(q\bar{q}\to V)}{dP_T^2} \sim \int_0^\infty d^2b e^{i\vec{P}_T\cdot\vec{b}} \times W(b,Q) + Y(P_T,Q)$$

• W(b,Q) is separated into a perturbative and non-perturbative part. The non-perturbative component is described by the Brock-Landry-Nadolsky-Yuan parameterization (PRD 67, 073016 (2003)):

$$W_{NP}(b) = \exp\left(-\left(g_1 + g_2 \ln\left(\frac{Q}{2Q_0}\right) + g_1 g_3 \ln(100x_1x_2)\right)b^2\right)$$

 $Q \sim 91 \text{GeV}, \ Q_0 = 1.6 \text{GeV}, \ x_{i,j} \sim 0.05$

• The W/Z P_T spectrum is found to be most sensitive to g_2 , which determines the most probable P_T .

Z P_T Spectrum and Fit for BLNY parameter

- $Z P_T$ spectrum :
 - Unfolded, can compare directly to theoretical prediction.
 - Default value used for g_i :

$$g_1 = 0.21 \text{ GeV}^2$$

 $g_2 = 0.68 \text{ GeV}^2$
 $g_3 = -0.60$

Now use default g₁, g₃,
 vary g₂. Fit to data.

Result
$$g_2 = 0.77 \pm 0.06$$
 GeV².

PDF Uncertainty

Parton distributions used as input to RESBOS are derived from global QCD fits to many experiments. We use CTEQ 6.1 parton distribution functions (JHEP 0310 046 (2003)), which gives us a way to estimate the uncertainty.

$$\sigma_{PDF \pm} = \frac{1}{1.6} \left(\sum_{i=1}^{n} \left[\Delta M_{W} \left(S_{i}^{\pm} \right) \right]^{2} \right)^{\frac{1}{2}}$$

Conversion to 1σ

Implications of W Mass Measurement

- Use D0 data to constrain boson production model
 - Reduces sensitivity to external inputs.
 - W/Z p_T distributions are calculated independently.
 - Includes boson rapidity-p_T correlation.
- Preliminary estimate of contribution to uncertainty (1/fb sample):

	Stat. (MeV)	g ₂ (MeV)	PDF (MeV)
$\Delta M_{W}(M_{T})$	22	5	15
$\Delta M_W(P_T(e))$	25	16	24

- Uncertainty due to W P_T spectrum is small compared to the statistical uncertainty. Add...
- Most significant production model uncertainty still due to PDFs.

Tim Andeen