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I discuss different aspects of the phenomenology of hypothetical sub eV mass particles arising
in the context of extensions of the standard model. I focus on a simple extension based on an
additional U(1) gauge symmetry and its corresponding gauge boson, called “hidden photon”.
Kinetic mixing with the standard photon leads to photon-hidden photon oscillations that are
searched for in laboratory experiments like ALPS at DESY. Hidden photons produced in the
interior of the Sun could be also detected in axion helioscopes like CAST at CERN and could
play an interesting role in late cosmology, where the presence of additional feebly interacting
relativistic particles seems to be favored. All these effects disappear as the hidden photon
mass decreases, allowing phenomenologically large kinetic mixings. However, in this case such
a hidden photon will even play a role in gauge coupling unification.

In the days of exploring the TeV frontier, are we leaving something behind us?
It is a common opinion, and we will find numerous examples of it in this volume, that the
standard model (SM) of particle physics is not completely satisfactory to describe certain aspects
of nature. Extensions of the SM invoked to cure their diseases include generally many additional
symmetries and fields. The corresponding particles have generally masses arranged to lay beyond
the reach of our collider experiments (or just around the corner), namely beyond a TeV. It
is clear that if these additional particles are very massive we have little chances of discover
them in colliders, and we should rely on low energy precision experiments. But they could be
additional light particles. On general grounds, low masses are related to some symmetry that
prevents high radiative contributions from larger mass scales. It is clear that the knowledge of
these hypothetical low energy particles will provide us with an understanding of their related
symmetries, and guide us through the difficult task of extending the standard model to describe
particle physics up to arbitrarily high energies.

Of course, when these particles couple directly to the SM its existence is severely constrained



from laboratory searches and our current understanding of astrophysics and cosmology. However,
there are certain models in which the powerful astrophysical constraints are evaded 1.

1 Massive Hidden photons and the “meV valley”

In this contribution I focus on one of these models, whose only addition to the SM lagrangian
consists in a new U(1) gauge symmetry and its corresponding gauge boson, here called “hidden
photon”. The SM fields are assumed to be uncharged under this new gauge group, but never-
theless they can still interact with the hidden photon through kinetic mixing with the standard
model photon. Therefore we will consider the low energy effective lagrangian
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where Fµν and Bµν are the photon (Aν) and hidden photon (Bν) field strengths. The dimension-
less mixing parameter sinχ can be generated at an arbitrarily high energy scale and does not
suffer from any kind of mass suppression from the messenger particles communicating between
the visible and the hidden sector. This makes it an extremely powerful probe of high scale
physics. The construction outlined here arises quite naturally in extensions of the SM based on
string theory, where values in the range 10−16 . χ . 10−2 can be expected 2.

The most prominent implication of the kinetic mixing term is that photons are no longer
massless propagation modes. The kinetic mixing term can be removed by changing the basis
{A,B} → {AR , S}, where AR = cosχA is a renormalized photon field and S = B − sinχA
is the state orthogonal to it, and therefore completely sterile with respect to electromagnetic
interactions. The renormalization is typically unobservable and will be discussed in section 2.
In this section we use A = AR . In the {A,S} basis the kinetic term is diagonal but kinetic
mixing has provided an off-diagonal mass term which produces A−S (vacuum) oscillations with
a probability

PA−S = sin2 2χ sin2
m2
γ′L

4ω
. (2)

where ω is the energy and L is the oscillation length. It also modifies the static Coulomb
potential with a Yukawa-like contribution

V (r) = −α
r

(
cos2 χ+ e−mγ′r sin2 χ

)
. (3)

The phenomenology of such a model has been considered by Okun 3 and others 4. The
stronger laboratory constraint comes from precision measurements of the Coulomb law 5 and
can be read off in Fig. 1. The sensitivity of this test has a clear maximum at distances of the
order of the centimeter, corresponding to mγ′ ∼ µeV. For much smaller mγ′ the hidden photon
contribution is indistinguishable from that of a single massless photon, and for much higher mγ′

the hidden photon contribution is exponentially suppressed.
Let us now consider the astrophysical bounds, focusing on the case of the Sun. Photons of

the interior of the Sun can oscillate into the sterile component that can freely escape from the
solar interior removing energy that otherwise will take much longer to drain. The response of
the solar structure to such an exotic energy loss is to raise the temperature of the interior so that
the thermonuclear reactions can provide this extra energy. The consequence is that Hydrogen is
converted much faster into Helium and the duration of the Hydrogen burning period is reduced.
Studies of Raffelt and Dearborn 6 concluded that such an exotic luminosity cannot be higher
than the actual visible luminosity of the Sun. Therefore, integrating eq. 2 over the thermal
distribution of photons over the solar interior will provide us with a limit 4,7 on χ. To proceed
we only have to take into account an important subtlety: namely that photons in a plasma



propagate as massive particles with a mass given by the plasma frequency ωP = 4παne/me with
α the fine structure constant and me, ne the electron mass and number density. In such a case,
the essential modification of the transition probability is the introduction of an effective mixing
angle given, in the small χ approximation 7, by

χ2 → χ2
eff =

χ2m4
γ′

(ω2
P −m2

γ′)2 + (ωΓ)2
(4)

which strongly suppresses A− S transitions, and therefore energy drain, when mγ′ � ωP. Here
Γ is the photon absorption rate and cuts-off the effective mixing in the resonant regime where
mγ′ ' ωP and the amplitude of the oscillations is maximum. The plasma frequency in the solar
interior varies in the range 1 eV . ωP . 300 eV (and typically ωΓ is smaller), so hidden photons
with masses below the eV can evade the solar luminosity bound even with relatively high values
of the vacuum mixing parameter χ (See Fig. 1).

Even a low, harmless, hidden photon flux can be detectable at earth by a suitable detector.
The CAST collaboration at CERN 8 (See the review of Silvia Borgi in this same Proceedings)
operates a search for solar axions of keV energies by tracking the Sun with a 10 m long LHC
magnet, since axions emitted from the Sun can convert into photons by the inverse Primakoff
effect 9. Such an experiment will be also sensitive to hidden photons, with the benefit that
high vacuum conditions are kept in the conversion region and thus the effective mixing angle
is not suppressed. This nearly background free experiment can measure a photon spectral flux
generated inside the magnet of 10−5 photons per second, cm2 and keV. This number was used 7

to set the hidden photon limit labeled CAST in Fig. 1. A recent paper 10 has pointed out that
considerable improvement can be achieved by measuring hidden photons of lower energies ∼ eV
where the flux is maximal since it mostly comes from the external shells of the Sun where the
electron density (and hence the plasma frequency) is smallest.

The Coulomb and CAST limits leave a valley in the allowed parameter space around the
suggestive mass scale of mγ′ ' meV. Since photon-hidden photon oscillations are resonant when
a plasma is present such that ωP = mγ′ , it would be advantageous to find environments with
a huge number of photons and electron densities ∼ 1015 cm−3. These conditions are found in
the early universe when the temperature is of order ∼ keV, i.e. after big bang nucleosynthesis
(BBN) but before the cosmic microwave background (CMB) formation. In such a scenario a
fraction of the photon background will be resonantly converted into hidden photons, forming
a hidden cosmic microwave background (hCMB) 11. This hCMB decouples much before than
the standard CMB and from that moment on mimics the effect of additional neutrino species,
N eff
ν . Since some of the CMB photons disappear, the baryon to photon ratio η measured at

decoupling also increases with respect to the value suggested by BBN. Therefore we can bound
∼ meV hidden photons from the agreement of the values of N eff

ν and η provided from BBN
and CMB physics 11. The CMB observations, combined with large scale structure data (LSS),
slightly prefer 12 N eff

ν > 3 but both frameworks can be made to coincide within the quoted
errors. The preference of a high N eff

ν > 3 is supported by the SDSS and Ly-α data and might
be likely due to systematics 13. However, even in 13 where a more careful treatment of the bias
parameters is included, values slightly higher than 3 are still preferred, with a best global fit
of N eff

ν = 3.8+2.0
−1.6 (95% C.L.). It is however premature to consider that such an excess has a

physical interpretation in terms of new physics, but if eventually it is confirmed it may require
new weakly interacting particles that are relativistic at CMB, namely sub eV particles, and
hidden photons could certainly do the job.

Note that the conservative “suggested” excess ∆N eff
ν ' 0.8 corresponds to a hidden photon

with χ ' 2× 10−6. The mass should be then ' 0.2 meV to avoid distortions of the CMB Plack
spectrum and the laboratory searches to be presented next. At the view of Fig. 1 this leads us
to a clear goal in the parameter space!



Interestingly, such a scenario is going to be tested in the near future in the laboratory. The
ALPS (Any Light Particle Search) experiment at DESY 14 is currently setting up an upgraded
“light-shinning-through-walls” experiment 15 that will explore much of the relevant parameter
space in the “meV valley”. The set up consists in a powerful laser beam which propagates
under high vacuum conditions to end up blocked in an opaque wall. If hidden photons or any
other weakly interacting low mass particles are produced before the wall they will go through
it and can be reconverted after the wall in another high vacuum cavity in which a sensitive
detector is placed. Some similar experiments have been already performed 16,17,18, the most
recent motivated by the recent PVLAS episode 19 and a recent paper has interpreted them in
terms of hidden photons20. The current ALPS proposal includes 300 W of laser power, conversion
and reconversion lengths of ∼ 6 meters and a small background ∼ 50 mHz. The results will be
presented in late fall of this same year, and immediately after several upgrades will be performed,
including possibly higher laser power, a new detector and “phase shift plates” 21 to enhance the
coherence between photons and hidden photons.

Already with the first upgrade the ALPS experiment will be sensitive to part of the region
of major cosmological interest, and will eventually cover it completely with subsequent improve-
ments. On the long term, additional coverage could be also provided by the mentioned new solar
hidden photon searches 10 or by a photon regeneration experiment using radio waves instead of
laser light 22.
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Figure 1: The “meV Valley” in the mass-mixing plane of a hidden photon is bounded at low masses by searches
from deviations of the Coulomb law and from seaches of solar hidden photons with the CAST helioscope at
higher masses. Light-shinning-through-walls (LSW) experiments have explored the peaceful realm around mγ′ ∼
meV and an upgraded ALPS setup will penetrate even deeper in the near future. In the early universe a part
of the CMB can resonantly oscillate into hidden photons contributing, as neutrinos do, to the radiation density
at decoupling. Values higher than Neff

ν > 5 can be excluded, but a value slightly higher than 3, Neff
ν ' 3.8 is

still preferred (Red line). The precise determination of the CMB spectrum by FIRAS constraints the distortions
that the creation of this hidden CMB would imprint on it. An experiment exploiting microwave cavities could be

sensitive to most of the region of cosmological interest. See the text for references.



2 Massless hidden photons and Unification

All effects mentioned before are lost in the probably most natural case, a massless hidden photon.
Well, not all of them. We have already mentioned that to get rid of the kinetic mixing and define
fields with canonical kinetic terms we need to renormalize the photon field with a factor cosχ. In
the low energy lagrangian considered this is harmless, since a photon renormalization is simply
reabsorbed in the definition of the electric charge as usual. Even when one considers the whole
standard model gauge group and allows our new U(1) gauge boson to mix with the boson of
hypercharge (kinetic mixing with non-abelian gauge fields will not respect gauge invariance) the
corresponding gauge coupling g1 will absorb again this factor and leave no trace in precision
electroweak observables.

Since this shift will only affect g1 but not g2 or g3, it could be detectable in a theory in
which there is an a priori relation between the couplings, such as in grand unification. In this
case we shall define the unification scale by the equality of the two couplings that are unchanged
g2(mGUT) = g3(mGUT). Note that we measure the “renormalized” g1 and this is allways larger
than the real value (the one we would expect to unify) in a factor 1/ cosχ, namely

gmeasured
1 =

greal
1

cosχ
. (5)

Interestingly, the measured value of g1 in the standard model turns out to be also larger than
the required to unify with g2 and g3 in a pure SU(5) model without supersymmetry. Therefore
unification could be achieved at a scale ' 1017 GeV (evading limits from proton decay) but
being “masked” by the exotic hypercharge renormalization due to kinetic mixing with χ ' 0.4.
We have taken values of g1,2,3 at the Z-pole from 23 and plotted the running in Fig. 2.

The case with supersymmetry (SUSY) is more complicated. Using the renormalization group
equations at the one-loop level, a small value of χ ' 0.055 improves the already impressive uni-
fication, but this effect is of similar magnitude than the threshold corrections of SUSY particles
of ∼TeV masses and particles at the scale of unification. When these corrections are included
the measured value of g1 seems to be a bit smaller than the required to unify perfectly 24 (see 25

for a recent discussion). While a more detailed study is under way 26, the two possible outcomes
are clear: if g1(mGUT) < g2,3(mGUT) a bound on χ of order 10−2 can be set, in the opposite case,
a small value of χ could be the responsible of the difference and unification could be achieved.
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Figure 2: One-loop running of the SM gauge couplings with an exotic renormalization of the hypercharge coupling
g1 due to kinetic mixing with an additional massless U(1) gauge boson. LEFT: standard model, RIGHT: with
supersymmetry. Note that α1,2,3 = g2

1,2,3/(4π) and g1 has been normalized with the usual SU(5) factor
p

5/3.
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