CKMfitter - The winter 2008 collection

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

Rencontres de Moriond - 1-8 March 2008

CKMfitter

イロト イヨト イヨト イヨト

CP-violation : the four parameters

In SM weak charged W^{\pm} transitions mix quarks of different generations

Encoded in unitary CKM matrix $V_{CKM} =$

$$= \left[\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right]$$

- 3 generations ⇒ 1 phase, only source of CP-violation in SM
- Wolfenstein parametrisation, defined to hold to all orders in λ and rephasing invariant

イロト イポト イヨト イヨト

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}$$

 \Rightarrow 4 parameters describing the CKM matrix, to extract from data

The big picture

590

Э

▲□ > ▲圖 > ▲目 > ▲目 > -

The inputs

CKM matrix within a frequentist framework ($\simeq \chi^2$ minimum) + specific scheme for theory errors (Rfit)

data = weak \otimes QCD \implies Need for hadronic inputs (often lattice)

$ V_{ud} $	superallowed β decays	arXiv 07
$ V_{us} $	$K_{\ell 3}$ (Flavianet)	$f_{+}(0) = 0$
ϵ_K	KTeV/KLOE	$B_{K} = 0.7$
$ V_{ub} $	inclusive and exclusive	$ V_{ub} \cdot 10$
$ V_{cb} $	inclusive and exclusive	$ V_{cb} \cdot 10$
Δm_d	last WA B_d - \overline{B}_d mixing	B_{B_s}/B_{B_d}
Δm_s	last WA B_s - \overline{B}_s mixing	$B_{B_s}=1$.
eta	last WA $J/\psi K^{(*)}$	
α	last WA $\pi\pi, \rho\pi, \rho\rho$	isospin
γ	last WA $B ightarrow D^{(*)} K^{(*)}$	GLW/AD
$B \rightarrow \tau \nu$	last WA	$f_{B_s}/f_{B_d} =$
		f ິດຣ

arXiv 0710.3181 $f_{+}(0) = 0.964(5)$ $B_{K} = 0.78 \pm 0.02 \pm 0.09$ $|V_{ub}| \cdot 10^{3} = 3.76 \pm 0.10 \pm 0.47$ $|V_{cb}| \cdot 10^{3} = 40.60 \pm 0.35 \pm 0.58$ $B_{B_{s}}/B_{B_{d}} = 1.00 \pm 0.02$ $B_{B_{s}} = 1.29 \pm 0.05 \pm 0.08$

isospin GLW/ADS/GGSZ $f_{B_s}/f_{B_d} = 1.2 \pm 0.02 \pm 0.05$ $f_{B_s} = 268 \pm 17 \pm 20 \text{ MeV}$

Selected inputs : γ

 γ angle from interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \bar{D}^0 K^-$

- GLW : *D* into CP eigenstates (*KK*, $\pi\pi$, $K_S\pi_0$, $K_S\omega$, $K_S\phi$)
- ADS : D^(*) into doubly Cabibbo suppressed states
- GGSZ : D^(*) into 3-body state and Dalitz analysis

A D F A D F A D F

Selected inputs : combined results on γ

Several updates since Spring 2007

・ロト ・回 ト ・ヨト ・ヨト

590

æ

Selected inputs : combined results on γ

Several updates since Spring 2007

- GGSZ (DK^{\pm} , D^*K^{\pm} , $DK^{*\pm}$ with $D^* \rightarrow D\pi^0$ and $D \rightarrow K_S^-\pi^+\pi^-$): increased statistics from Babar and Belle, Babar takes also neutral D into $K_S^0K^+K^-$
- GLW method : DK update from Babar
- ADS method : DK update from Belle

イロト イヨト イヨト イヨト

Selected inputs : combined results on γ

Several updates since Spring 2007

- GGSZ (DK^{\pm} , D^*K^{\pm} , $DK^{*\pm}$ with $D^* \rightarrow D\pi^0$ and $D \rightarrow K_S^-\pi^+\pi^-$) : increased statistics from Babar and Belle, Babar takes also neutral D into $K_S^0K^+K^-$
- GLW method : DK update from Babar
- ADS method : DK update from Belle

All methods combined : $\gamma = (72^{+34}_{-30})^{\circ}$ (68% CL) From the global fit : $\gamma = (68.6^{+2.4}_{-5.3})^{\circ}$ (68% CL)

Sébastien Descotes-Genon (LPT-Orsay)

Selected inputs : combining methods for γ

Not only γ in 3 methods, also hadronic quantities (strong phases...)

- GLW (*DK*, *D*^{*}*K*, *DK*^{*}) $R_{CP\pm} = 1 \pm 2r_B \cos \delta_B \cos \gamma + r_B^2$ $A_{CP\pm} = \pm 2r_B \sin \delta_B \sin \gamma / R_{CP\pm}$
- ADS $(DK, D^*K, DK^* \text{ for} K\pi, K\pi\pi^0 \dots)$ $R_{ADS} = r_B^2 + r_D^2$ $+ 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma$
- GGSZ (*DK*, *D*^{*}*K*, *DK*^{*}) $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$ $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$
- Combining results may not yield the naive average and may not improve the accuracy
 - ... at least sometimes (DK*)

The global fit

 $|V_{ud}|, |V_{us}|$ $|V_{cb}|, |V_{ub}|$ $B \rightarrow \tau \nu$ $\Delta m_d, \Delta m_s$ ϵ_K $\sin 2\beta$ α γ $\begin{array}{l} {\sf A}=0.795^{+0.025}_{-0.015}\\ \lambda=0.2252^{+0.0008}_{-0.0008}\\ \bar{\rho}=0.135^{+0.033}_{-0.016}\\ \bar{\eta}=0.345^{+0.015}_{-0.018} \end{array}$

(68% CL)

Sébastien Descotes-Genon (LPT-Orsay)

1-8/3/8 8

590

Э

$B \rightarrow V\gamma$

Sébastien Descotes-Genon (LPT-Orsay)

${\it B} ightarrow ho\gamma$ and ${\it B} ightarrow {\it K}^*\gamma$

 $b \rightarrow d, s\gamma$: loop processes, give access to $|V_{t(d,s)}|$, complement $\Delta m_{d,s}$

Early days : focus on magnetic op. $Q_7 = (e/8\pi^2)m_b \bar{D}\sigma^{\mu\nu}(1+\gamma_5)F_{\mu\nu} b$ and assume short-distance dominance

 $B \rightarrow
ho \gamma$ and $B \rightarrow K^* \gamma$

 $b \rightarrow d, s\gamma$: loop processes, give access to $|V_{t(d,s)}|$, complement $\Delta m_{d,s}$ Early days : focus on magnetic op. $Q_7 = (e/8\pi^2)m_b \bar{D}\sigma^{\mu\nu}(1+\gamma_5)F_{\mu\nu} b$ and assume short-distance dominance

$$\begin{split} \mathsf{R}_{\rho/\omega} &= \frac{\overline{\mathcal{B}}(\rho^{\pm}\gamma) + \frac{\tau_{B^{\pm}}}{\tau_{B^{0}}} \left[\overline{\mathcal{B}}(\rho^{0}\gamma) + \overline{\mathcal{B}}(\omega\gamma)\right]}{\overline{\mathcal{B}}(K^{\pm}\gamma) + \frac{\tau_{B^{\pm}}}{\tau_{B^{0}}} \left[\overline{\mathcal{B}}(K^{\ast0}\gamma)\right]} \\ &= \left|\frac{V_{td}}{V_{ts}}\right|^{2} \left(\frac{1 - m_{\rho}^{2}/m_{B}^{2}}{1 - m_{K^{\ast}}^{2}/m_{B}^{2}}\right)^{3} \frac{1}{\xi^{2}} \left[1 + \Delta R\right] \end{split}$$

- ξ ratio of form factors
- ΔR estimated as $\Delta R = 0.1 \pm 0.1$

Ali, Lunghi, Parkhomenko 02, 04, 06

Many open questions : dependence of ΔR on CKM matrix ? isopin breaking ? weak annihilation (tree for $(\rho, \omega)\gamma$) ?

Sébastien Descotes-Genon (LPT-Orsay)

CKMfitter

A more sophisticated analysis

For each final state, estimate all contributions, expressed as factor to the leading amplitude (magnetic operator Q_7)

$$ar{\mathcal{A}} \equiv rac{G_F}{\sqrt{2}} \left(\lambda_u^D a_7^u(V) + \lambda_c^D a_7^c(V)
ight) \langle V\gamma | Q_7 | ar{B}
angle \qquad \lambda_U^D = V_{UD}^* V_{Ub}$$

$$a_7^U(V) = a_7^{U,\text{QCDF}}(V) + a_7^{U,\text{ann}}(V) + a_7^{U,\text{soft}}(V) + \dots$$

• QCDF : QCD factorisation for LO in $1/m_b$ up to $O(\alpha_s)$

Bosch and Buchalla 02

- ann,soft: 1/mb-suppressed terms from light-cone sum rules Ball,Jones,Zwicky 06
- each decay described individually
- u and c internal loops (short and long dist), not "buried" into ΔR
- other operators than Q7 taken into account

Sébastien Descotes-Genon (LPT-Orsay)

- HFAG (10⁻⁶)
 - $egin{array}{rl} {\cal K}^{*-}\gamma & {
 m 40.3 \pm 2.6} \ {\cal K}^{*0}\gamma & {
 m 40.1 \pm 2.0} \end{array}$
- Babar (10⁻⁶)
 - $\begin{array}{ll} \rho^+\gamma & \ \ 1.10^{+0.37}_{-0.33}\pm 0.09 \\ \rho^0\gamma & \ \ 0.79^{+0.22}_{-0.20}\pm 0.06 \\ \omega\gamma & \ \ 0.40^{+0.24}_{-0.20}\pm 0.05 \end{array}$

- HFAG (10⁻⁶)
 - $egin{array}{lll} {\cal K}^{*-}\gamma & {
 m 40.3 \pm 2.6} \ {\cal K}^{*0}\gamma & {
 m 40.1 \pm 2.0} \end{array}$
- Belle (10⁻⁶)
 - $\begin{array}{ll} \rho^+\gamma & 0.55^{+0.42+0.09}_{-0.36-0.08} \\ \rho^0\gamma & 1.25^{+0.37+0.07}_{-0.33-0.06} \\ \omega\gamma & 0.56^{+0.34+0.05}_{-0.27-0.10} \end{array}$
- Belle : $B(B_s \to \phi \gamma) = 57^{+18+12}_{-15-11} \cdot 10^{-6}$

1-8/3/8 12

Constraint competitive with BB mixing (box versus penguin, different theory inputs)

Sébastien Descotes-Genon (LPT-Orsay)

CKMfitter

5900

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The B_s sector

590

Current constraints on UTs

Sébastien Descotes-Genon (LPT-Orsay)

1-8/3/8 14

Sébastien Descotes-Genon (LPT-Orsay)

1-8/3/8 14

Recent β_s measurements

 $\beta_s = \arg\left(-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*}\right)$ angle opposite to the small size of B_s triangle

- In SM $\beta_s = -0.0183^{+0.0009}_{-0.0008}$ rad
- Recent flavour-tagged $B_s^0 \rightarrow J/\psi\phi$ analysis D0 : $\beta_s = -0.23 \pm 0.14$ CDF : β_s in [-0.6,-0.2]
- Non trivial likelihoods and assumptions on nuisance parameters (strong phases, Γ_s...) still to be understood

• A year at LHCb [2 fb⁻¹]: $\sigma(\beta_s) = 0.023$

 $[B_s \rightarrow J/\psi(\mu\mu)\phi]$ O. Schneider EuroFlavour07

イロト イロト イヨト イヨト

nan

Lighter quarks and the lattice

DQC

イロト イタト イヨト イヨト

Improvements for $|V_{ud}|$ and $|V_{us}|$

Recently, big steps in lattice simulations : 3 dynamical quarks (unquenched) with light masses and (very) small errors =>Essential role in reducing the theoretical QCD uncertainties

イロト イポト イヨト イヨト 一日

Improvements for $|V_{ud}|$ and $|V_{us}|$

Recently, big steps in lattice simulations : 3 dynamical quarks (unquenched) with light masses and (very) small errors =>Essential role in reducing the theoretical QCD uncertainties

- |V_{ud}|: improved analysis of nuclear β decays [in fit]
- $|V_{us}|$: $K \rightarrow \pi \ell \nu$ + (dom wall) $f_+(0) = 0.964(5)$ [in fit] (UKQCD+RBC)

Ja C

<ロ> <同> <同> < 回> < 回> < 回> = 三

Improvements for $|V_{ud}|$ and $|V_{us}|$

Recently, big steps in lattice simulations : 3 dynamical quarks (unquenched) with light masses and (very) small errors =>Essential role in reducing the theoretical QCD uncertainties

- |V_{ud}|: improved analysis of nuclear β decays [in fit]
- $|V_{us}|$: $K \rightarrow \pi \ell \nu$ + (dom wall) $f_+(0) = 0.964(5)$ [in fit] (UKQCD+RBC)
- $|V_{us}/V_{ud}|$: $K \rightarrow \ell \nu / \pi \rightarrow \ell \nu +$ (staggered) $f_K/f_{\pi} =$ 1.189(7) [not in fit] (HPQCD+UKQCD)

CKM fit HIN KI2/lattice prediction 1.0 0.8 0.6 ų 0.4 0.2 0.0 0.228 0.230 0.232 0.234 0.236 0.238 |V_{us} / V_{ud}|

Remarkable : f_K/f_π very difficult to control on the lattice [light quarks]

Improvements for $|V_{cd}|$ and $|V_{cs}|$

Charm sector favourite place to test lattice QCD [$m_c \sim \Lambda_{QCD}$] \implies form factors and decay constants [access to | V_{cd} | and | V_{cs} |]

- K and nucleon: V_{ud} ≃ V_{cs} and V_{cd} ≃ V_{us} only at first non trivial order in λ (need b-input to fix higher orders)
- B alone: rather constraining
- Indirect (combination of the two above): already quite well determined

イロト イポト イヨト イヨト

• Unitarity constraint: $|V_{cd}|^2 + |V_{cs}|^2 \le 1$

Improvements for $|V_{cd}|$ and $|V_{cs}|$

Charm sector favourite place to test lattice QCD [$m_c \sim \Lambda_{QCD}$] \implies form factors and decay constants [access to $|V_{cd}|$ and $|V_{cs}|$]

- K and nucleon: V_{ud} ~ V_{cs} and V_{cd} ~ V_{us} only at first non trivial order in λ (need b-input to fix higher orders)
- B alone: rather constraining
- Indirect (combination of the two above): already quite well determined
- Unitarity constraint: $|V_{cd}|^2 + |V_{cs}|^2 \le 1$

 Direct (old) : |V_{cd}| from vN scattering and |V_{cs}| from charmed-tagged W decays

Sébastien Descotes-Genon (LPT-Orsay)

Improvements for $|V_{cd}|$ and $|V_{cs}|$

Charm sector favourite place to test lattice QCD [$m_c \sim \Lambda_{QCD}$] \implies form factors and decay constants [access to $|V_{cd}|$ and $|V_{cs}|$]

- K and nucleon: V_{ud} ~ V_{cs} and V_{cd} ~ V_{us} only at first non trivial order in λ (need b-input to fix higher orders)
- *B* alone: rather constraining
- Indirect (combination of the two above): already quite well determined
- Unitarity constraint: $|V_{cd}|^2 + |V_{cs}|^2 \le 1$

• Direct (new) : $|V_{cd}|$ from νN scattering and $|V_{cs}|$ from CLEO-c $D \rightarrow K \ell \nu$ + lattice I. Shipsey CLEO-c Aspen workshop

Sébastien Descotes-Genon (LPT-Orsay)

The trouble with $|V_{cs}|$

- $D_s \rightarrow \ell \nu$ (CLEO-c,Belle...)
- Unquenched (staggered) lattice $f_{D_s} = 241 \pm 3 \text{ MeV}$ (HPQCD+UKQCD)
- Combined : $|V_{cs}| = 1.076 \pm 0.041$

DQC

イロト イボト イヨト イヨト 二日

The trouble with $|V_{cs}|$

- $D_s \rightarrow \ell \nu$ (CLEO-c,Belle...)
- Unquenched (staggered) lattice $f_{D_s} = 241 \pm 3 \text{ MeV}$ (HPQCD+UKQCD)
- Combined : $|V_{cs}| = 1.076 \pm 0.041$
- compared to fit value (68% CL)
 |V_{cs}| = 0.97351^{+0.00020}_{-0.00022}

A (1) > (1) > (1)

 f_{D_s} supposedly ideal for lattice (charm strange) and far worse than f_K/f_{π} (light quarks) !?

Uncontrolled systematics in full (unquenched) QCD simulations ??

Conclusion (?)

5990

Conclusion

Impressive consistency of the CKM picture of CP violation

- More information on γ (the lesser known angle)
 ⇒not necessarily correlated improvement in accuracy
- First steps towards a check of the B_s triangle (Tevatron \rightarrow LHCb)
- $B \rightarrow V\gamma$ competing and comparing with $\Delta m_{d,s}$
- Contrasted news from lighter quarks and the lattice (very good agreement for *u*, *d*, *s*, worries from charm)
 - \implies Unquenching very new : are all systematics under control ?

イロト イポト イヨト イヨト 一日

Conclusion

Impressive consistency of the CKM picture of CP violation

- More information on γ (the lesser known angle)
 ⇒not necessarily correlated improvement in accuracy
- First steps towards a check of the B_s triangle (Tevatron \rightarrow LHCb)
- $B \rightarrow V\gamma$ competing and comparing with $\Delta m_{d,s}$
- Contrasted news from lighter quarks and the lattice (very good agreement for *u*, *d*, *s*, worries from charm)
 - \Rightarrow Unquenching very new : are all systematics under control ?

Still a lot of work ahead for flavour facilities ... and for theorists !

Thank you !

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sébastien Descotes-Genon (LPT-Orsay)

5990

(日) (日) (日) (日) (日)

$B \rightarrow V\gamma$: QCD factorisation part

Bosch and Buchalla : explicit formulae for $a_{7L}^{U,QCDF}$, complete to $O(\alpha_s)$

• LO contribution to T_1 from Q_7

NLO from 4-quark Q_{1...6} and chromomagnetic Q₈

$B \rightarrow V\gamma$: weak annihilation and soft gluons

Weak annihilation

- Short-distance part estimated within QCDF
- Long-distance contribution : photon emission from *B* meson estimated through LCSR

Soft-gluon emission from a quark loop

- for light-quark loop : fairly complicated LCSR
- for heavy-quark loop : $1/m_Q$ expansion, then LCSR

Sébastien Descotes-Genon (LPT-Orsay)

CKMfitter

Selected inputs : α

Only one update : Belle value for $Br(\rho^0 \rho^0)$ \implies leading to a slight decrease in the accuracy on α

All methods combined : $\alpha = (87.8^{+5.8}_{-5.4})^{\circ}$ From the global fit : $\alpha = (89.7^{+5.3}_{-2.4})^{\circ}$

500

α and the closure of the triangles

- Isospin relation between amplitudes $A(\pi^+\pi^0) = A(\pi^+\pi^-)/\sqrt{2} + A(\pi^0\pi^0)$ (and CP conjugates)
- Reconstruction of the two triangles from observables
 PiPi RhoRho

- 1 or 2 solution for each of the 2 triangles
- 2 solutions for $\alpha_{\it eff}$
- \Longrightarrow 2,4 or 8 solutions for α

The observables depend on γ and $\mu = (r_B, \delta)$

- Minimise $\chi^2(\gamma,\mu)$ w.r.t μ and subtract the minimum to get $\Delta\chi^2(\gamma)$
- Assume that the true value of μ is μ_t and compute PDF[$\Delta \chi^2(\gamma) | \gamma, \mu_t$]
- compute $(1-CL)_{\mu_t}(\gamma)$ through Toy Monte Carlo
- Maximise w.r.t μ_t to get (1-CL)(γ)
- \Longrightarrow Quite general, but computing demanding procedure

[previous alternative : assume that μ_t is the value of μ minimising $\chi^2(\gamma,\mu)$ on real data]