Charm and Tau Decays at Belle and BaBar

Anže Zupanc Jožef Stefan Institute, Ljubljana On behalf of the Belle and BaBar Collaborations

XLIIIrd Rencontres de Moriond Electroweak Interactions and Unified Theories 1 - 8 March, 2008

Outline

Introduction

- Experimental environment
- Charm Physics
 - D⁰ D
 ⁰ Mixing
 Mixing in lifetime ratio of D⁰ → K⁺K⁻, π⁺π⁻ vs D⁰ → K⁻π⁺ at BaBar
 Search for mixing in D⁰ → K^{(*)-}ℓ⁺ν_ℓ decays at Belle
 CP Violation in D⁰ Decays
 Search for CPV in D⁰ → K⁺K⁻, π⁺π⁻ at BaBar and Belle
 Search for CPV in D⁰ → π⁺π⁻π⁰ at Belle
 Search for CPV in D⁰ → π⁺π⁻π⁰ at Belle
 Search for CPV in D⁰ → π⁺π⁻π⁰ at Belle
 Search for CPV in D⁰ → π⁺π⁻π⁰ and D⁰ → K⁺K⁻π⁰ at BaBar
 - Measurement of $\mathcal{B}(D_s \to \mu \nu_\mu)$ at Belle

Tau Physics

- \bullet Search for $\tau \to \ell \ell \ell$ decays at Belle and BaBar
- Search for $au
 ightarrow \ell V^0$ decays at Belle and BaBar

4 Conclusions

Experimental environment

Belle

- large-solid-angle magnetic spectrometers, providing excellent tracking, vertexing and particle ID
- located at asymmetric energy e^-e^+ ($\sqrt{s} = \Upsilon(4S)$) colliders KEKB/PEP-II
- B–Factories are also Charm– and Tau–Factories

$D^0 - \bar{D}^0$ Mixing Measurements

Phenomenology:

• mass eigenstate \neq flavor eigenstate

•
$$|D_{1,2}>=p|D^0>\pm q|ar{D}^0>, \ |p|^2+|q|^2=1$$

• time evolution of flavor eigenstate

•
$$|D^0(t)\rangle = \left[|D^0\rangle \cosh\left(\frac{ix+y}{2}t\right) + \frac{q}{p}|\bar{D}^0\rangle \sinh\left(\frac{ix+y}{2}t\right)\right] \times e^{-\frac{1}{2}(1+\frac{im}{\Gamma})t}$$

• Mixing parameters x and $y_{:}$ in SM $|x|,~|y| \leq \mathcal{O}(10^{-2})$

•
$$x = \frac{m_1 - m_2}{\Gamma}$$
, $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$, $\Gamma = \frac{1}{2}(\Gamma_1 + \Gamma_2)$

• GIM, CKM suppressed but enhanced by long-distance effects

Principle of Measurements:

• $D^{*+} \rightarrow D^0 \pi_S^+$

- background suppression
- D^0/\bar{D}^0 flavor tagging with π_S^+
- Vertexing with beam point constraint
 - determines proper decay time $\mathbf{t} = \frac{\mathbf{l}_{dec} \mathbf{m}_{D^0}}{\mathbf{p}_{D^0}}$ with uncertainty σ_t

Mixing in lifetime ratio of $D^0 ightarrow K^+ K^-, \pi^+ \pi^-$ vs $D^0 \rightarrow \overline{K^-} \pi^+$ at BaBar

Mixing parameters:

A. Zupanc (JSI)

Moriond EW 08, 04/03/2008

Search for mixing in $D^0 \to K^{(*)-}\ell^+\nu_\ell$ decays at Belle

Mixing parameter:

•
$$< D^0 | \bar{D}^0 > = \mathbf{R}_{\mathbf{M}} \simeq \frac{\mathbf{x}^2 + \mathbf{y}^2}{2} = \frac{\mathbf{N}_{\mathbf{WS}}}{\mathbf{N}_{\mathbf{RS}}}$$

No mixing \Rightarrow Right Sign (RS)

•
$$D^{*+} \rightarrow D^0 \pi_s^+; \ D^0 \rightarrow K^- \ell^+ \nu_\ell$$

 $Mixing \Rightarrow Wrong Sign (WS)$

•
$$D^{*+} \rightarrow D^0 \pi^+_{\underline{s}} \hookrightarrow \overline{D}^0 \rightarrow K^+ \ell^- \nu_\ell$$

Neutrino reconstruction:

•
$$P_{\nu} = P_{cms} - P_{K\ell} - P_{rest}$$

• $M_{K\ell\nu}^2 = m_{D^0}^2 \& (P_{\nu}^*)^2 = 0$
 $M_{K\ell\nu}^2 = m_{D^0}^2 \bigvee (P_{\nu}^*)^2 = 0$
 $M_{KM}^2 = \frac{R_M}{R_M}$
 R_M
 R_M

Moriond EW 08, 04/03/2008

Current status of $D^0 - \overline{D}^0$ Mixing

The world average (HFAG) on x and y determined with χ^2 fit to the results of all $D^0 - \overline{D}^0$ mixing measurements for CPV allowed case (8 independent parameters):

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

$$\begin{aligned} & \mathsf{x} = (0.97^{+0.27}_{-0.29})\% \\ & \mathsf{y} = (0.78^{+0.18}_{-0.19})\% \end{aligned}$$

Consistent with the high end of SM expectations.

Moriond EW 08, 04/03/2008

CP Violation in D^0 Decays

CP Violation:

- time-integrated asymmetry: $A_{CP} = \frac{\Gamma(D^0 \to f) \Gamma(D^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})}$
 - in decays (only in singly Cabbibo suppressed decays)
 - in mixing
 - in interference between mixing and decay
- for $f = K^-K^+$, $\pi^-\pi^+$: $A_{CP} \sim \mathcal{O}(10^{-5} 10^{-4})$ PRD51,3478(1995); RNCIB,26N7,11(2003) • for $f = \pi^{-}\pi^{+}\pi^{0}$: $A_{CP} \sim \mathcal{O}(10^{-3})$
 - hep-ph/0703132v2; PRD75,036008(2007)

Principle of measurements:

- $D^{*+} \rightarrow D^0 \pi_{c}^+$ • $N_{D^0}^{\text{reco}} = N_{D^{*+}}^{\text{prod}} \cdot \mathcal{B}(D^{*+} \to D^0 \pi^+) \cdot \mathcal{B}(D^0 \to f) \cdot \varepsilon_f \cdot \varepsilon_{\pi_c^+}$
 - Contributions to measured asymmetry: $A^{\text{meas}} = A_{FB} + A_{CP} + A_{\epsilon}^{\pi s}$
 - A_{FB} : production asymmetry (anti-symmetric function of $cos\theta^*$)
 - A_{CP}: CP asymmetry
 - $\mathbf{A}_{\epsilon}^{\pi s}$: asymmetry in π_{s}^{+}/π_{s}^{-} reconstruction efficiency (measured and corrected for using tagged and untagged $D^0 \rightarrow K^- \pi^+$ decays)

Search for CPV in $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ at BaBar and Belle

Search for CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ at Belle

CPV in decay, integrated over time and Dalitz space

Efficiency corrected signal yields:

$$S_{D^0} = (1154.7 \pm 6.7) \times 10^3$$

$$\frac{\mathcal{L} = 532 \text{ fb}^{-1}}{\mathcal{B}(D^0 \to \pi^+ \pi^- \pi^0)} =$$

$$(10.12 \pm 0.04 \pm 0.18)\%$$

A. Zupanc (JSI)

Moriond EW 08, 04/03/2008

/03/2008 10 / 44

Search for CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$, $K^+ K^- \pi^0$ at BaBar

Method I: Search for differences in Dalitz plots between D^0 and \overline{D}^0

$$\Delta = (N_{\bar{D}^0} - RN_{D^0}) / \sqrt{\sigma_{N_{\bar{D}^0}}^2 + R^2 \sigma_{N_{D^0}}^2}$$

$$\chi^2/\nu = (\sum_{DP} \Delta^2)/\nu = \begin{cases} 1.020 & \pi^+\pi^-\pi^0\\ 1.056 & K^+K^-\pi^0 \end{cases}$$

One Sided Gaussian CL for consistency with no CPV: 32.8%($\pi^+\pi^-\pi^0$) and 16.6%($K^+K^-\pi^0$)

 $\pi^{+}\pi^{-}\pi^{0}$ $K^+K^-\pi^0$ 0.01 (a) 0.04 (b) <mark>-0.02</mark> منه بروس a^{Ran} -0.02 -0.01 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 $|\cos \theta_{n^0}^{CM}|$ $|\cos \theta_{\mathbf{p}^0}^{CM}|$ $\mathcal{L} = 385 \text{ fb}^{-1}$ arXiv:0802.4035

Method II: Look for a phase space integrated asymmetry

$$\mathcal{A}_{ ext{corr}}^{ ext{reco}}(oldsymbol{cos} heta^*) = rac{oldsymbol{N}(D^0) - oldsymbol{N}(ar{D}^0)}{oldsymbol{N}(D^0) + oldsymbol{N}(ar{D}^0)}$$

 $\begin{aligned} &A_{CP}^{\pi\pi\pi} = (-0.31 \pm 0.41 (\text{stat}) \pm 0.17 (\text{syst}))\% \\ &A_{CP}^{KK\pi} = (+1.00 \pm 1.67 (\text{stat}) \pm 0.25 (\text{syst}))\% \end{aligned}$

A. Zupanc (JSI)

Leptonic $D_s^+ \rightarrow \mu^+ \nu_\mu$ decays at Belle

Similar techniques are used to calculate b and c decay constants in lattice QCD:

- often these calculations are needed to interpret ex. results on B decays
- decays of charmed hadrons used to test predictions for analogous quantities $\mathcal{B}(D_s \to \tau \nu_{\tau}): \mathcal{B}(D_s \to \mu \nu_{\mu}): \mathcal{B}(D_s \to e \nu_e) = 10: 1: 10^{-5}, \ \mathcal{B}(\tau \to h \nu_{\tau}) \sim 0.11$

Principle of Measurement:

- Full Reconstruction Recoil Method
 - fully reconstructed $e^+e^- \rightarrow D_s^*D^{\pm,0}K^{\pm,0}X$, $X = n\pi$ and up to one γ
 - tag/signal side
 - tag: $D \rightarrow Kn\pi$ (n = 1, 2, 3) and K
 - signal: $D_s^* \rightarrow D_s \gamma$ (reconstructed in the recoil against DKX)

Measurement of $\mathcal{B}(D_s \to \mu \nu_{\mu})$ at Belle

Within the sample of D_s -tags:

- require only one more track in event, identified as a muon
- use $D_s \rightarrow e\nu_e$ sample for background shape determination

 $(\mathcal{L} = 548 \text{ fb}^{-1})$ Absolute *B* measurement $\mathcal{B}(D_s \to \mu \nu_\mu) =$ $[6.44 \pm 0.76(\text{stat}) \pm 0.57(\text{syst})] \cdot 10^{-3}$ $f_{D_c} = 275 \pm 16(\text{stat}) \pm 12(\text{syst}) \text{ MeV}$

entries / 0.072 GeV ²/c⁴

70

60

50 40

30 20

10

9

M²_{rec} (DKX γμ) / GeV²/c⁴

13 / 44

 $N(D_s \to \mu \nu_{\mu}) = 169 \pm 16 \pm 8$

Search for Lepton Flavor Violating Decays

Predictions:

Model	$\mathcal{B}(\tau \to \ell \ell \ell)$
SM + ℓ mix.	10^{-14}
mSUGRA + seesaw	10^{-9}
SUSY + SO(10)	10^{-10}
SM + heavy $\nu_{R}^{\acute{M}}$	10^{-10}
Non-universal Z'	10^{-8}
SUSY + Higgs	10^{-7}
$\mathcal{B}(\pi \to \ell)/(0) = 10^{-1}$	-8 10-7

Principle of measurement:

- tag one au by its 1-prong decay ($\mathcal{B}_{1-\mathrm{prong}}\sim$ 85%)
- $\bullet\,$ the other τ is searched for in LVF decay
- suppress background from: $\tau\tau$, low multiplicity $q\bar{q}$ events (q = u, d, s, c), Bhabha and $\mu\mu$
- determine signal/background yield on the $M_{\rm inv}$ vs. ΔE plane:

•
$$M_{
m inv}\simeq m_{ au},\,\Delta E=E_{
m LVF}-E_{beam}\simeq 0$$

 $\begin{array}{c} \bigcirc 0.2 \\ \bigcirc \\ \bigcirc \\ 0.1 \\ \bigcirc \\ 0 \\ -0.1 \\ -0.2 \\ -0.3 \\ \hline \\ 1.7 \\ 1.75 \\ M_{inv} (GeV/C^2) \\ \hline \\ \end{array}$

Search for $au ightarrow \ell \ell \ell$ $(\ell = e, \mu)$ Decays at Belle and BaBar

A. Zupanc (JSI)

Charm and Tau Decays

Moriond EW 08, 04/03/2008

/03/2008 15 / 44

Search for $au ightarrow \ell V^0$ decays at Belle and BaBar

First search for the $\tau^- \rightarrow \ell^- \omega$ mode and 3–10 times more restrictive UL for other modes than previous measurements. $\sigma \rightarrow \epsilon \equiv 0$

A. Zupanc (JSI)

Charm Physics:

• precision measurements of mixing parameters, e.g.

- $\hookrightarrow \ \ \, y_{CP} = (1.132 \pm 0.266)\% \ \, (\text{HFAG world average})$
- $\stackrel{\longleftrightarrow}{\hookrightarrow} \quad \text{consistent with SM expectations, providing strong} \\ \quad \text{constraints for new physics models}$
- focusing on precise measurements of x and search for CP Violation
 → New Physics
- discrepancy between Latice QCD calculation and experiments in D_s decay constant

Tau Physics:

upper limits on B for LFV decays are approaching the 10⁻⁸ level

 → restricting the parameter space of many models beyond SM

A B F A B F

Backup slides

2

$D^0 - \overline{D}^0$ Mixing Phenomenology

Short distance:

 $<\overline{D}^{0}|H^{\Delta C=2}_{
m w}|D^{0}>=rac{G_{F}^{2}}{4\pi^{2}}V^{*}_{cs}V^{*}_{cd}V_{ud}V_{us}rac{(m^{2}_{s}-m^{2}_{d})^{2}}{m^{2}_{c}}<\overline{D}^{0}|ar{u}\gamma^{\mu}(1-\gamma_{5})car{u}\gamma_{\mu}(1-\gamma_{5})c|D^{0}>$

•
$$|V_{cb}^*V_{ub}| \ll |V_{cs}^*V_{us}|, |V_{cd}^*V_{ud}|$$

- main contribution from d and s quarks
- $m_d \sim m_s \Rightarrow$ mixing small

Long distance:

- absorptive part (real intermediate states) ⇒ y
- dispersive part (off-shell intermediate states) ⇒ x

$$|x| \sim \mathcal{O}(10^{-5})$$

Ann.Rev.Nucl.Sci. 53, 431 (2003)

$$ert x ert \sim \mathcal{O}(10^{-2}) \ ert y ert \sim \mathcal{O}(10^{-2})$$

Nucl. Phys. B592, 92 (2001); PRD69, 114021 (2004)

 $D^0 - \bar{D}^0$ mixing is rare process in SM \Rightarrow possible contributions from NP

A. Zupanc (JSI)

Fitting procedure:

- 3 categories:
 - signal:

 $PDF_{sig} \propto e^{-t/\tau} \otimes R(t, t_0, \sigma_t), \ R(t, t_0, \sigma_t) = \sum_{n=1,3} G(t, t_0, s_n \sigma_t^n)$

- resolution function offset t_0 (due to detector misalignment) is common for all three modes
- up to an overall scale factor in the width, the resolution function parameters are shared among all three modes
- combinatorial background:

 $\textit{PDF}_{\textit{comb.}} \propto \textit{Gaussian} + \textit{Gaussian}$ with a power law tail

- shape parameters determined for each mode individually using the m and Δm sidebands
- means are free parameters of the fit
- the amount is determined using MC samples scaled to the luminosity of data sample
- mis-reconstructed charm events $(D^0 \to K^- I^+ \nu, D^0 \to K^- \pi^+ \pi^0)$ $PDF_{charm} \propto e^{-t/\tau'} \otimes G(t, \mu', \sigma')$
 - shape and normalization determined using MC samples
 - crosschecked by comparing the data and MC events in m and Δm sidebands

Systematics:

• most systematic errors related to the signal are expected to cancel in the lifetimes ratio

	$\sigma_{y_{CP}}$ (%)			c	σ _{ΔΥ} (%)	
Systematic	K^-K^+	$\pi^{-}\pi^{+}$	Av.	K^-K^+	$\pi^{-}\pi^{+}$	Av.
Signal model	0.130	0.059	0.085	0.072	0.265	0.062
Charm bkg.	0.062	0.037	0.043	0.001	0.002	0.001
Combinatoric bkg.	0.019	0.142	0.045	0.001	0.005	0.002
Selection criteria	0.068	0.178	0.046	0.083	0.172	0.011
Detector model	0.064	0.080	0.064	0.054	0.040	0.054
Quadrature sum	0.172	0.251	0.132	0.122	0.318	0.083

< 3 > < 3 >

$D^0 \rightarrow K^- \ell^+ \nu_\ell$ backup

Wrong Sign (mixed events; no DCS decays):

- $|x|, |y| \ll 1$ and negligible CPV:
 - time-dependent mixing probability

$$\mathcal{P}(D^0 o ar{D}^0 o K^+ \ell^- ar{
u}_\ell) \propto R_M t^2 e^{-t/ au} \quad R_M pprox rac{x^2 + y^2}{2}$$

Right Sign:

$$\mathcal{P}(D^0 o K^- \ell^+ ar{
u}_\ell) \propto e^{-t/ au}$$

A. Zupanc (JSI)

Moriond EW 08, 04/03/2008

$D^0 ightarrow K^- \ell^+ u_\ell$ backup

Associated signal:

Background:

- Correlated (5%(15%) in e(µ) WS sample)
 - K^{\pm} candidate or/and ℓ^{\pm} candidate originate from the same decay chain as π_s^{\pm}
 - described using MC
- Uncorrelated
 - described using event mixing on data sample

A. Zupanc (JSI)

$D^0 ightarrow K^- \ell^+ u_\ell$ backup

Systematics:

	source	e-1	e-2	μ -1	μ-2
1	fitting histo. statistics	± 1.54	± 0.91	±2.64	± 1.81
2	WS correlated bkg.	±0.37	$^{+0.39}_{-0.38}$	$^{+2.98}_{-2.89}$	$^{+3.05}_{-2.97}$
3	WS uncorrelated bkg.	$\substack{+1.30\\-1.88}$	$^{+1.70}_{-1.85}$	$^{+2.58}_{-2.82}$	$^{+1.57}_{-3.20}$
4	imperfect t_{xy}	± 0.05	±0.02	± 0.01	$^{+0.25}_{-0.33}$
5	associated signal	$^{+0.01}_{-0.00}$	±0.00	$^{+0.09}_{-0.10}$	±0.02
6	RS correlated bkg.	± 0.00	± 0.00	± 0.01	±0.04
	total systematic	$^{+2.05}_{-2.46}$	$^{+1.97}_{-2.10}$	$^{+4.75}_{-4.83}$	$+3.89 \\ -4.74$
	statistical + systematic	$+5.58 \\ -5.74$	+3.66 -3.73	$+8.53 \\ -8.57$	$+5.86 \\ -6.45$

A. Zupanc (JSI)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 Moriond EW 08, 04/03/2008

▶ ≣ ৩৭৫ 2008 24/44

CPV backup

Number of reconstructed decays:

$$N^{reco} = N^{prod}_{D^{*+}} \cdot \mathcal{B}(D^{*+} o D^0 \pi^+) \cdot \mathcal{B}(D^0 o h^+ h^-) \cdot \epsilon_{hh} \cdot \epsilon_{\pi}$$

- Contributions to asymmetry in N^{reco}:
 - production (A_{FB})
 - branching fractions (A_{CP})
 - efficiencies (A_e)
- If asymmetries are small $(A_{FB}, A_{CP}, A_{\epsilon} \ll 1)$ it is easy to see, that the asymmetry in N^{reco} is:

$$A^{reco} = A^{D^{*+}}_{FB} + A^{D^0\pi}_{CP} + A^{hh}_{CP} + A^{hh}_{\epsilon} + A^{\pi}_{\epsilon}$$

• Some are zero: $A_{CP}^{D^0\pi} = 0$ (strong decay), $A_{\epsilon}^{hh} = 0$ (same final state)

CPV backup

- Production asymmetry (A_{FB}) is due to interference in $e^+e^- \rightarrow c\overline{c}$ (mediated by virtual γ or Z^0)
 - anti-symmetric function of $\cos \theta^*$ (follows from *CP* conservation)

$$A_{FB}(\cos \theta^*) = -A_{FB}(-\cos \theta^*)$$

• Measured asymmetry:

$$A^{reco} = A^{D^{*+}}_{FB}(\cos\theta^*) + A^{hh}_{CP} + A^{\pi}_{\epsilon}(\theta, p)$$

- Asymmetry in π_{slow} efficiency $A^{\pi}_{\epsilon}(\theta, p)$ can be measured in $D^0 \to K^-\pi^+$ by using tagged and untagged decays
- Corrected asymmetry

$$\begin{aligned} A_{corr}^{reco} &= A^{reco} - A_{\epsilon}^{\pi}(\theta, p) \\ A_{corr}^{reco}(\cos \theta^*) &= A_{FB}^{D^{*+}}(\cos \theta^*) + A_{CP}^{KK} \end{aligned}$$

Number of reconstructed tagged and untagged $D^0 \rightarrow K^- \pi^+$ decays:

$$\begin{array}{lll} \mathcal{N}^{\mathrm{untag}} & = & \mathcal{N}_{D^0}^{\mathrm{prod}} \cdot \mathcal{B}(D^0 \to K^- \pi^+) \cdot \epsilon_{K\pi} \\ \mathcal{N}^{\mathrm{tag}} & = & \mathcal{N}_{D^{*+}}^{\mathrm{prod}} \cdot \mathcal{B}(D^{*+} \to D^0 \pi_S^+) \cdot \mathcal{B}(D^0 \to K^- \pi^+) \cdot \epsilon_{K\pi} \cdot \epsilon_{\pi} \end{array}$$

Measured asymmetry:

$$egin{array}{rcl} A^{ ext{untag}} &=& A^{D^0}_{FB} + A^{K\pi}_{CP} + A^{K\pi}_{\epsilon} \ A^{ ext{tag}} &=& A^{D^0}_{FB} + A^{K\pi}_{CP} + A^{K\pi}_{\epsilon} + A^{\pi}_{\epsilon} \end{array}$$

Assuming $A_{FB}^{D^0} = A_{FB}^{D^{*+}}$:

$$A^{\pi}_{\epsilon} = A^{\mathrm{tag}} - A^{\mathrm{untag}}$$

 $A_{\epsilon}^{K\pi}$ and A_{ϵ}^{π} are functions of corresponding phase spaces.

,

向下 イヨト イヨト ニヨ

CPV in $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ decays backup (BaBar)

Determination of soft pion π_s asymmetry:

• using tagged and untagged $D^0 \to K^- \pi^+$ decays

 $\implies K\pi \text{ efficiency-map obtained from}$ the non-tagged D^0 daughters \hookrightarrow weight D^0 candidates in the π_s tagged $K\pi$ sample (eliminating asym. due to D^0/\bar{D}^0 daughters)

 $\implies K\pi \text{ relative } \pi_s \text{ efficiency-map (left)}$ with uncertainty (right)

> \hookrightarrow weight D^0 yields to correct for tagging asymmetry

CPV in $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ decays backup (BaBar)

The signal yields are determined by the 2D (m vs. Δm) fits:

	Raw yields								Post-correction yields			
	Final state		D^0			\bar{D}^0		Corr. used	D^0	\bar{D}^0		
	$K\pi$	3,363,000	±	6,000	3,368,000	±	6,000	none	_	_		
	$K\pi\pi_s$	705,100	±	1,000	703,500	±	1,000	$K\pi$ map	633, 300	630,100		
	$KK \pi_s$	65,730	±	340	63,740	±	330	π_s map	65,210	63,490		
_	$\pi\pi\pi_s$	32,210	±	310	31,930	±	310	π_s map	31,900	31,760		

<u> </u>	. •
System	atics
System	urics.

Category	Δa^{KK}_{CP}	$\Delta a_{CP}^{\pi\pi}$
2-Dim. PDF shapes	$\pm 0.04\%$	$\pm 0.05\%$
π_s correction	±0.08%	±0.08%
a _{CP} extraction	±0.09%	±0.20%
Quadrature sum	$\pm 0.13\%$	$\pm 0.22\%$

Determination of soft pion π_s asymmetry:

• using tagged and untagged $D^0 \to K^- \pi^+$ decays

- $\Rightarrow a symmetry map of the untagged$ $K \pi sample (left)$ with uncertainty (right)
 - \hookrightarrow weight D^0 candidates in the π_s tagged $K\pi$ sample
- ⇒ asymmetry map of the slow pion efficiency (left) with uncertainty (right)
 - \hookrightarrow weight D^0 yields to correct for tagging asymmetry

CPV in $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ decays backup (Belle)

The signal counting was performed by the mass-sideband subtraction.

Systematics:

Signal counting			π_S eff. correction			Aco extraction		
	KK	$\pi\pi$		KK	$\pi\pi$		KK	
Signal shape diff. Sideband position Random π_{slow} bkg.	0.02% 0.01% 0.03%	0.04% 0.03% 0.03%	Statistics of $K\pi$ Binning Min. num. events/bin	0.09% 0.03% 0.04%	0.09% 0.02% 0.03%	Binning SVD1/2	0.03%	0.03%
Total	0.04%	0.06%	Total	0.10%	0.10%	Total	0.0470	0.0370

Δ	7	nanc	(19	51
~ .	<u>z</u> u	pane	()~	21

$${\cal B}(D^0 o \pi^+ \pi^- \pi^0)/{\cal B}(D^0 o {\cal K}^- \pi^+ \pi^0)$$
 backup (Belle)

Background sources:

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \pi^0) / \mathcal{B}(D^0 \to K^- \pi^+ \pi^0)$ backup (Belle)

Signal Yields:

• The shape parameters of the signal and background contributions are fixed to the values obtained on MC sample (signal peak position and *scale* parameter of the widths are free parameters)

• after the signal/background normalizations are obtained the $M^2(h\pi)$ vs. $M^2(\pi\pi^0)$ Dalitz histograms are filled with events from the signal region for data and simulated background

$$S = \frac{D^{i} - N_{\text{misrec}}S^{i}_{\text{misrec}} - N_{udsb}B_{udsb} - N_{\text{misid}}B^{i}_{misid} - N_{c}B^{i}_{c}}{\epsilon^{i}}$$

$\mathcal{B}(D^0 \to \pi^+ \pi^- \pi^0) / \mathcal{B}(D^0 \to K^- \pi^+ \pi^0)$ backup (Belle)

Systematics:

Source	Error, %	Source	Error, %
PID corrections	0.91	Selection criteria:	
MC statistics	0.30	K _S veto	0.50
$Fit(D^0 o \pi^+ \pi^- \pi^0)$	0.61	$p_{ m cms}(D^*)$	0.77
$Fit(D^0 o K^- \pi^+ \pi^0)$	0.30	$M(K^-\pi^+\pi^0/3\pi)$	0.36
$D^0 ightarrow \pi^+\pi^-\pi^0$ backgr. model	0.48	ΔM	0.30
Binning	0.54	E_{γ}	0.40
MC misreconstruction	0.10	$M(\pi^0)$	0.20
Tracking	0.01	$p_{ m lab}(\pi^0)$	0.16
Total			1.79

Comparison:

Group	$N_{\rm ev}, 10^3$	$rac{\mathcal{B}(D^0 ightarrow \pi^+ \pi^- \pi^0)}{\mathcal{B}(D^0 ightarrow K^- \pi^+ \pi^0)}$	${\cal B}(D^0 o \pi^+ \pi^- \pi^0), 10^{-3}$
Belle	123.19 ± 0.49	$0.1012 \pm 0.0004 \pm 0.0018$	$13.66 \pm 0.05 \pm 0.24 \pm 0.61$
BaBar	60.43 ± 0.34	$0.1059 \pm 0.0006 \pm 0.0013$	$14.30 \pm 0.08 \pm 0.18 \pm 0.64$
CLEO	10.83 ± 0.16		$13.14 \pm 0.19 \pm 0.46 \pm 0.24$

Moriond EW 08, 04/03/2008

A B < A B <</p>

34 / 44

3

CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays backup (Belle)

 π_s reconstruction efficiency correction:

• The charge-dependent data/MC PID corrections for π_s were obtained using independent $D^* \rightarrow D^0(K_S^0 \pi^0) \pi_s$ data and MC samples

Forward-backward asymmetry (A_{fb}) :

• data sample of $D^0 \to K^+ K^-, \pi^+ \pi^-$ decay events used to calculate $A_{fb}(cos(\theta))$

Systematics:

Source	MC stat.	Tracking	Fit	K _S veto	PID	Binning	A _{fb}	Total
σ, %	0.24	1.01	0.58	0.23	0.15	0.05	0.15	1.23

CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$, $K^+ K^- \pi^0$ backup (BaBar)

Method III: Look for differences in angular moments of the D^0 and \overline{D}^0 intensity distributions

Angular moment \equiv efficiency corrected invariant mass distribution of events weighted by spherical harmonics $Y_1^0(\theta_H) = \sqrt{1/2\pi} P_1(\cos\theta_H)$

Normalized residuals:

$$X_l = (ar{P}_l - RP_l)/\sqrt{\sigma_{ar{P}_l}^2 + R^2 \sigma_{P_l}^2}$$

Obtained one sided Gaussian CL for consistency with no CPV:

- 28.2% for $\pi^+\pi^-$
- 28.4% for $\pi^+\pi^0$
- 63.1% for *K*⁺*K*⁻
- 23.8% for $K^+\pi^0$

Moriond EW 08, 04/03/2008

CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$, $K^+ K^- \pi^0$ backup (BaBar)

State	f _r (%)	Δa_r (%)	$\Delta \phi_r$ (°)	Δf_r (%)
$\rho^{+}(770)$	68	$-3.2 \pm 1.7 \pm 0.8$	$-0.8 \pm 1.0 \pm 1.0$	$-1.6 \pm 1.1 \pm 0.4$
$\rho^{0}(770)$	26	$2.1{\pm}0.9{\pm}0.5$	$0.8{\pm}1.0{\pm}0.4$	$1.6 {\pm} 1.4 {\pm} 0.6$
$\rho^{-}(770)$	35	$2.0{\pm}1.1{\pm}0.8$	$-0.6 \pm 0.9 \pm 0.4$	$0.7{\pm}1.1{\pm}0.5$
$\rho^{+}(1450)$	0.1	$2\pm 11\pm 8$	$-30\pm 25\pm 9$	$0.0 {\pm} 0.1 {\pm} 0.1$
$\rho^{0}(1450)$	0.3	$13\pm8\pm6$	$-1 \pm 14 \pm 3$	$0.1 {\pm} 0.2 {\pm} 0.1$
$\rho^{-}(1450)$	1.8	$-3 \pm 6 \pm 5$	8±7±3	$-0.2 \pm 0.3 \pm 0.1$
$\rho^{+}(1700)$	4	$19 \pm 27 \pm 9$	9±7±3	$0.4{\pm}1.0{\pm}0.4$
$\rho^{0}(1700)$	5	$-31\pm20\pm12$	-7±6±2	$-1.3 \pm 0.8 \pm 0.3$
$\rho^{-}(1700)$	3	$-3 \pm 14 \pm 11$	-3±8±3	$-0.5 \pm 0.6 \pm 0.3$
f ₀ (980)	0.2	$0.0 {\pm} 0.1 {\pm} 0.2$	$-3\pm7\pm4$	$0.0 {\pm} 0.1 {\pm} 0.1$
$f_0(1370)$	0.4	$-0.3 \pm 1.3 \pm 1.2$	$7 \pm 14 \pm 5$	$-0.2 \pm 0.1 \pm 0.1$
$f_0(1500)$	0.4	$0.4{\pm}1.1{\pm}0.7$	$-1\pm 12\pm 1$	$0.0 {\pm} 0.1 {\pm} 0.1$
$f_0(1710)$	0.3	$-3\pm 3\pm 2$	$-25 \pm 13 \pm 11$	$0.0 {\pm} 0.1 {\pm} 0.1$
$f_2(1270)$	1.3	$8 \pm 4 \pm 5$	$2\pm 5\pm 2$	$0.1 {\pm} 0.1 {\pm} 0.1$
$\sigma(400)$	0.8	$-0.3 \pm 0.7 \pm 2.0$	-4±7±3	$-0.1 \pm 0.1 \pm 0.1$
Nonres	0.8	$12 \pm 7 \pm 8$	$11\pm9\pm4$	$0.2 \pm 0.3 \pm 0.2$
State	f_r (%)	Δa_r (%)	$\Delta \phi_r (^{\circ})$	Δf_r (%)
K*(892) ⁺	45	2+3+2	10+12+3	0.8+1.1+0.4
$K^{*}(1410)^{+}$	4	$101 \pm 65 \pm 37$	$1\pm 21\pm 6$	$1.7 \pm 1.8 \pm 0.6$
$K^+\pi^0(S)$	16	$-130 \pm 64 \pm 51$	-9+10+6	$-2.3 \pm 4.7 \pm 1.0$
$\phi(1020)$	19	$-1\pm 2\pm 1$	$-10\pm20\pm5$	$-0.4 \pm 0.8 \pm 0.2$
$f_0(980)$	7	$14{\pm}16{\pm}6$	$-12\pm 25\pm 8$	$0.4{\pm}2.6{\pm}0.2$
$\left[a_{0}(980)^{0}\right]$	[6]	$[19 \pm 16 \pm 6]$	[-7±16±8]	$[0.6\pm1.9\pm0.2]$
f ₂ '(1525)	0.1	-38±74±8	$6 {\pm} 36 {\pm} 12$	$0.0 {\pm} 0.1 {\pm} 0.3$
$\tilde{K}^{*}(892)^{-}$	16	$1\pm3\pm1$	-7±4±2	$1.7{\pm}1.3{\pm}0.4$
$K^{*}(1410)^{-}$	5	$133 {\pm} 93 {\pm} 68$	-23±13±9	$1.7{\pm}2.8{\pm}0.7$
$K^{-}\pi^{0}(S)$	3	$8 \pm 68 \pm 36$	$32 \pm 39 \pm 14$	$0.4{\pm}2.4{\pm}0.5$

Method IV: Measure amplitudes and phases of resonances in D^0 and \overline{D}^0 independently

Dalitz plot amplitude:

$$\mathcal{A} = \sum_{r} a_{r} e^{i\phi_{r}} A_{r}(s_{+}, s_{-})$$

PRD76,011102(2007),

PRL99,251801(2007)

$$\Delta a_r = a_r^{\bar{D}^0} - a_r^{D^0}$$
$$\Delta \phi_r = \phi_r^{\bar{D}^0} - \phi_r^{D^0}$$
$$\Delta f_r = f_r^{\bar{D}^0} - f_r^{D^0}$$

The CP asymmetry in any amplitude, relative to that of the whole decay, is no larger than a few percent.

A. Zupanc (JSI)

Moriond EW 08, 04/03/2008

$D_s \rightarrow \mu \nu_\mu$ reconstruction method backup

A. Zupanc (JSI)

Charm and Tau Decays

Moriond EW 08, 04/03/2008

$D_s ightarrow \mu u_\mu$ backup

Signal yield extraction:

- signal shapes and efficiency depend on number of prompt particles (n_X) in $e^+e^- \rightarrow D_s^*DKX$ reactions
- Problem: MC doesn't reproduce the n_X distribution obtained on the data sample and $n_X^{rec} \le n_X^{true}$
- Solution: number of D_s -tags as a function of n_X^{true} in data is extracted from 2D histograms in n_X^{rec} and $M_{rec}(DKX\gamma)$ using MC signal shapes for different values of n_X^{true} and WS sample for background shapes

A. Zupanc (JSI)

Moriond EW 08, 04/03/2008

$D_s ightarrow \mu u_\mu$ backup

Background in $D_s \rightarrow \mu \nu_{\mu}$:

signal
non-D_s
semileptonic D_s
τν
hadronic

Systematics:

- data/MC background samples (4.5%)
- signal MC distribution (6.4%)
- μ tracking and identification eff. (2.8%)
- difference in relative rates of individual D_s decays between data and MC (3.0%)

Predictions:

Model	REF.	$\mathcal{B}(au o \ell \ell \ell)$
$SM + \ell$ mix.	PRD 16,1444(1977); PRD 45,1908(1980); EPJ C8,513(1999)	10^{-14}
mSUGRA + seesaw	EPJ C14,319(2002); PRD 66,115013(2002)	10^{-9}
SUSY + SO(10)	NPB 649,189(2003); PRD 68,033012(2003)	10^{-10}
$SM + heavy \ \nu_R^M$	PRD66,034008(2002)	10^{-10}
Non-universal Ż'	PLB 547,252(2002)	10^{-8}
SUSY + Higgs	PLB 549,159(2002); PLB 566,217(2003)	10^{-7}

 $\mathcal{B}(\tau \to \ell V^0) \sim 10^{-8} - 10^{-7}$: PRD 62,030610(2000); NPB 701,3(2004); PRD 74,035010(2006)

LVF τ decays at *B*-factories:

- clean environment
 - jet like events ($B\overline{B}$ background rejection through event shape variables)
- signal LVF decay is neutrinoless
 - no missing momentum

Main types of background:

A B < A B </p>

LVF in $\tau \rightarrow \ell V^0$ decays backup

A. Zupanc (JSI)