NEMO3 experiment: results for ¹⁵⁰Nd

Gwénaëlle Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration

> Rencontres de Moriond La Thuile, 1-8 March 2008

Outline

- Double beta decay physics
- The NEMO3 experiment
- $\beta\beta 2\nu$ results for ¹⁵⁰Nd
- Background for $\beta\beta0\nu$
- $\beta\beta0\nu$ results for ¹⁵⁰Nd
- Conclusions and perspectives

Double beta decay physics

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{\nu}$ $\beta\beta2\nu$ decay

 $\beta\beta2\nu$ decay is allowed by the Standard Model and has been observed for 9 nuclei (7 studied by the NEMO experiments).

 $(A,Z) \rightarrow (A,Z+2) +2e^{-}$ Beyond Standard Model $\beta\beta0\nu$ decay

Neutrinoless double beta decay ($\beta\beta0v$)

 $\beta\beta0v$ process: $\Delta L=2$ Violation of the conservation of the lepton number

- \rightarrow massive Majorana neutrino
- \rightarrow neutrino mass hierarchy

Other mechanisms: right currents (V+A)

emission of Majoron SUSY Neutrinoless double beta decay ($\beta\beta0v$)

 $\beta\beta$ 0v process: Δ L=2 Violation of the conservation of the lepton number

 \rightarrow massive Majorana neutrino

 \rightarrow neutrino mass hierarchy

Other mechanisms: right currents (V+A)

emission of Majoron SUSY

The NEMO3 detector

 $\frac{\text{Sources}}{\text{6.914 kg of }^{100}\text{Mo and }0.932 \text{ kg of }^{82}\text{Se}}$ $S = 20 \text{ m}^2, 60 \text{ mg/cm}^2$

<u>Tracking volume</u>: Drift chamber (Geiger mode) 6180 cells Gaz: He + 4% ethanol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators associated to low-background PMTs

Gamma shielding: Iron (18 cm) Neutron shielding: borated water + wood Magnetic field: 25 Gauss

Identification of e^- , e^+ , γ and α

ββ emitters in NEMO3

The NEMO3 experiment

Souterrain de Modane in 2001 and with the antiradon tent since October 2004

ββ event selection

Selection criteria

- 2 tracks associated with negatively charged particles
- 2 PMTs, energy deposit greater than 200 keV
- PMT-Track association
- Common vertex

- Internal hypothesis (external event rejection)
- No other isolated PMT (γ rejection)
- No delayed track (214Bi rejection)

$\beta\beta2\nu$ results for ¹⁵⁰Nd

 $Q_{\beta\beta}$ = 3.367 MeV 46.6 g of Nd₂O₃ enriched to 91%, equivalent to 37 g of ¹⁵⁰Nd Feb 2003 – Dec 2006 : 939 days of data collection 2828 events observed

 $T_{1/2} (\beta \beta 2\nu) = (9.20 + 0.25 - 0.22 (stat) \pm 0.73 (syst)). 10^{18} y$

Results of previous experiments

ITEP TPC experiment 9 events observed, 38 days, natural Nd_2O_3 (2.5g of ¹⁵⁰Nd) 36 events observed, 53 days, 51.5 g of enriched Nd_2O_3 (*V. Artemiev et al.,Phys. Let. B., 345, (1995) 564*)

 $T_{\frac{1}{2}}(\beta\beta 2\nu) = (1.88^{+0.66}_{-0.39}(\text{stat}) \pm 0.19(\text{syst})).10^{19} \text{ y}$

University of California (Irvine) group TPC experiment 476 events observed, 262 days, 15.5 g of Nd_2O_3 enriched to 91 % in ¹⁵⁰Nd (*A. De Silva et al., Phys. Rev. C 56 (1997) 2451*)

$$T_{\frac{1}{2}}(\beta\beta 2\nu) = (6.75^{+0.37}_{-0.42}(\text{stat}) \pm 0.68(\text{syst})).10^{18} \text{ y}$$

Background measurement for $\beta\beta0v$

²⁰⁸TI, ²¹⁴Bi in calorimeter, neutrons One-crossing-electron channel $\Delta t = 3 \text{ ns}$

External (e⁻, γ) channel $\Delta t = 3 \text{ ns}$

 γ from radiative capture of neutrons, $\gamma > 3$ MeV Pair creation (e⁻,e⁺)_{int} $\Delta t = 0$ ns

²⁰⁸Tl inside the sources (e⁻,2 γ), (e⁻,3 γ) from foil $\Delta t = 0$ ns

Radon/²¹⁴**Bi in the foils or gas** ($e^{-\gamma}$, α) from foil or gas $\Delta t = 0$ ns

ββ2v from foil 2 e⁻ channel from foil $\Delta t = 0$ ns

$\beta\beta0v$ results for ¹⁵⁰Nd

Light Neutrino exchange

Collie statistical method above 2.5 MeV Detection efficiency: 19%

 $T_{1/2} (\beta \beta 0 v) > 1.45 \ 10^{22} \ y \qquad 90 \ \% \ CL$

<m_v> < 3.7 - 5.1 eV V.A. Rodin et al., Nucl. Phys. A 766 (2006) 107

Previous result: $T_{\frac{1}{2}} > 1.7 \ 10^{21} \text{ y} \quad 90 \% \text{ CL}$ A.A. Klimenko et al., Nucl. Instr. Meth. B 17 (1986) 445

Right currents: T_{1/2} (ββ0v) > 1.27 10²² y 90 % CL

Emission of Majoron (M1) : $T_{1/2} (\beta \beta 0 v) > 1.55 \ 10^{21} \ y \quad 90 \ \% \ CL$

Summary of NEMO3 results

Isotope	Data	T _½ (ββ2ν) - years	
¹⁰⁰ Mo *	389 days - Phase 1	7.11 ± 0.02 (stat) ± 0.54 (syst) × 10 ¹⁸	
⁸² Se *	389 days - Phase 1	9.6 ± 0.3 (stat) ± 1.0 (syst) × 10 ¹⁹	
¹¹⁶ Cd	365 days - Phase 1	2.8 ± 0.1 (stat) ± 0.3 (syst) × 10 ¹⁹	
⁹⁶ Zr	365 days - Phase 1	2.0 ± 0.3 (stat) ± 0.2 (syst) × 10 ¹⁹	
⁴⁸ Ca	365 days - Phase 1	3.9 ± 0.7 (stat) ± 0.6 (syst) × 10 ¹⁹	
¹³⁰ Te	534 days - Phases 1 + 2	7.6 ± 1.5 (stat) ± 0.8 (syst) × 10 ²⁰	

* R. Arnold et al., Phys. Rev. Lett. 95 182302 (2005)

Isotope	Data	T $_{\frac{1}{2}}$ (ββ0v) - years	<m<sub>v></m<sub>
¹⁰⁰ Mo	693 days - Phases 1 + 2	> 5.8 x 10 ²³	< 0.8 – 1.3 eV
⁸² Se	693 days - Phases 1 + 2	> 2.1 x 10 ²³	< 1.4 – 2.2 eV

Conclusion and perspectives

- The NEMO3 detector is still collecting data.
- The following value of the half-life for the $\beta\beta 2\nu$ decay of ¹⁵⁰Nd was obtained:

 $T_{1/2}$ (ββ2ν) = (9.20 +0.25 (stat) ± 0.73 (syst)). 10¹⁸ y

• The limit on the half-life value for the $\beta\beta0v$ process has been improved.

 $T_{1/2} > 1.45 \ 10^{22} \text{ y} \quad 90\% \text{ CL} \qquad < m_v > < 3.7 - 5.1 \text{ eV}$

- ¹⁵⁰Nd is a good candidate for the SuperNEMO and SNO+ projects:
 - high $Q_{\beta\beta}$ value
 - large phase space factor

Enrichment by laser isotope separation of large masses of ¹⁵⁰Nd currently under consideration.

Back up slides

Search for double beta decay experimentally

Calorimeter

HPGe – bolometer Te – scintillator HM, IGEX, CUORICINO Very good efficiency and energy resolution

TPC

Irvine, Gotthard, EXO Large mass (¹³⁶Xe) and efficiency

Tracking + calorimeter

NEMO

Direct identification of the electrons, identification of the background, angular measurement, several isotopes studied at once.

Background measurement

Internal e^{-} - γ analysis channel

Single e⁻ analysis channel

