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 Introduction

nB − nB̄

s

∣∣∣∣
today

= (8.66± 0.35)× 10−11

Attractive and successful scenario to explain the observed 
matter-antimatter asymmetry:

It naturally arises when invoking the see-saw mechanism to 
account for the small neutrino masses. 

The same see-saw framework provides explanation for two 
seemingly unrelated problems: neutrino masses and BAU.

“Minimal amount’’ of physics BSM: RH neutrinos.

Lint = λαiNα"iH + hiēi"iH
c +

1
2
MαN2

α + h.c.
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 Introduction

The mechanism (roughly speaking): in the early Universe at               , 
RH neutrinos decay out of equilibrium in an L- and CP-violating way, 
thus generating a L asymmetry. 
Non-perturbative SM processes (“sphalerons”) play the role of converting 
L into a B asymmetry, which arrives to us.

The three famous Sakharov conditions are fulfilled:
1) L is violated by the Majorana mass of N. Sphalerons convert it 

into a B violation.

2) CP violation in N decays                   (complex     needed)

3) If N-decays are slow compared to the expansion
the N’s decay out of equilibrium.

Leptogenesis works in principle. Whether or not it is able to explain the 
observed BAU needs a quantitative analysis.

N → !H λ

ΓD < H(T ∼MN )

T ∼MN
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Getting quantitative answers requires to keep track of the evolution of 
the abundances of all the particles involved.

A lot of effort in recent years to refine the basic picture and include 
corrections: thermal effects (2003), spectator processes (2005), flavour 
structure in the lepton sector (2006) ...

The dynamics of leptogenesis is usually analysed by means of semi-
classical Boltzmann equations. The CP asymmetry 

is assumed to be a constant.

We tried to go beyond and look for a fully quantum approach, which 
led us to a set of quantum Boltzmann equations.

Main result: the CP asymmetry shows a time dependence.
Depending on the model, this effect may or may not be significant.
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εN =
Γ(N → "H)− Γ(N → "̄H̄)
Γ(N → "H) + Γ(N → "̄H̄)

 Introduction
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We need the time evolution of quantum correlators with definite initial 
conditions and not the transition amplitude of particle reactions. So, the 
ordinary equilibrium QFT at finite temperature is not the appropriate tool.

The most appropriate extension of QFT to deal with non-equilibrium 
phenomena amounts to generalizing the time contour of integration to a 
closed time-path                 Closed Time-Path (CTP) formalism (a.k.a. 
Schwinger-Keldysh formalism).

It is a powerful Green’s function formulation for describing out-of-
equilibrium phenomena in field theory (widely used in condensed matter and nuclear 
theory).

All time integrations are performed along a deformed time contour

and time-ordering operators are considered along the path. 

It allows to follow the particle abundances at a given time as functions of the 
previous dynamical history of the system (“memory effects”).
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Quantum Boltzmann Equations

CTP  FORMALISM
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FIG. 1: The appropriate time contour C.

Since we need the temporal evolution of quantum correlators with definite initial conditions and not simply the
transition amplitude of particle reactions, the ordinary equilibrium quantum field theory at finite temperature is not
the appropriate tool. The most appropriate extension of the field theory to deal with nonequilibrium phenomena
amounts to generalizing the time contour of integration to a closed-time path. More precisely, the time integration
contour is deformed to run from −∞ to +∞ and back to −∞.

The CTP formalism (often dubbed as in-in formalism) is a powerful Green’s function formulation for describing
non-equilibrium phenomena in field theory. It allows to describe phase-transition phenomena and to obtain a
self-consistent set of quantum Boltzmann equations. The formalism yields various quantum averages of operators
evaluated in the in-state without specifying the out-state. On the contrary, the ordinary quantum field theory
(often dubbed as in-out formalism) yields quantum averages of the operators evaluated with an in-state at one end
and an out-state at the other.

For example, because of the time contour deformation, the partition function in the in-in formalism for a real
scalar field is defined to be

Z [J ] = Tr

[

T

(

exp

[

i

∫

C
Jφ

])

ρ

]

= Tr

[

T+

(

exp

[

i

∫

J+φ+

])

× T−

(

exp

[

−i

∫

J−φ−

])

ρ

]

, (A1)

where C in the integral denotes that the time integration contour runs from minus infinity to plus infinity and then
back to minus infinity again, see Fig. 1. The symbol ρ represents the initial density matrix and the fields are in
the Heisenberg picture and defined on this closed time contour. Sometimes it is more usful to work with other
field variables, φc = 1/2(φ+ + φ−) and φ∆ = (φ+ − φ−). In such a case one has to properly redefine the sources
as Jc = 1/2(J+ + J−) and J∆ = (J+ − J−). To identify the physical degrees of freedom, the normalization of the
generating functional Z [J∆, Jc]|J∆=0 = 1 has to be imposed.

We must now identify field variables with arguments on the positive or negative directional branches of the time
path. This doubling of field variables leads to six different real-time propagators on the contour [22]. These six
propagators are not independent, but using all of them simplifies the notation. For a generic bosonic neutral scalar
field φ they are defined as

G−+ (x, y) = i〈φ(x)φ(y)〉,
G+− (x, y) = i〈φ(y)φ(x)〉,
G++ (x, y) = G−+(x, y)θ(x, y) + G+−(x, y)θ(y, x),

G−− (x, y) = G+−(x, y)θ(y, x) + G−+(x, y)θ(x, y),

GR(x, y) = G++(x, y) − G+−(x, y) =
(

G−+(x, y) − G+−(x, y)
)

θ(x0 − y0),

GA(x, y) = G++(x, y) − G−+(x, y) =
(

G+−(x, y) − G−+(x, y)
)

θ(y0 − x0), (A2)

where the last two Green functions are the retarded and advanced Green functions respectively and θ(x, y) =
θ(x0 − y0) is the step function. When computing a loop diagram, one has to assign to the interaction points a plus
or a minus sign in all possible manners and sum all the possible diagrams, taking into account that vertices which
a minus sign has been assigned to must be multiplied by −1.

In the basis of the fields φc and φ∆, one may define the Green functions

〈φc(x)φc(y)〉 ≡ Gc(x, y) = −
i

2

(

G−+(x, y) + G+−(x, y)
)

,

〈φc(x)φ∆(y)〉 = −i GR(x, y), (A3)

while the Green function 〈φ∆(x)φ∆(y)〉 vanishes identically because of the identity GR + GA = G+− + G−+.
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Figure 2: One-loop self-energy of the lightest RH neutrino.

out of the time integral. This allows to think the distributions as functions of the center-

of-mass time only. We have set to zero the damping rates of the particles in Eq. (14)
and retained only those cosines giving rise to energy delta functions that can be satis-

fied1. Under these assumptions, the distribution function may be taken out of the time
integral, leading – at large times – to the so-called Markovian description. The kinetic

equation (27) has an obvious interpretation in terms of gain minus loss processes, but
the retarded time integral and the cosine function replace the familiar energy conserving
delta functions. In the second passage, we have also made the usual assumption that all

distribution functions are smaller than unity and that those of the Higgs and lepton dou-
blets are in equilibrium and much smaller than unity, f!fH ! f eq

! f eq
H . Elastic scatterings

are typically fast enough to keep kinetic equilibrium. For any distribution function we
may write f = (n/neq)f eq, where n denotes the total number density. Therefore, Eq. (27)
can be rewritten as

∂nN1

∂t
= −〈ΓN1

(t)〉nN1
+ 〈Γ̃N1

(t)〉neq
N1

,

〈ΓN1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

ΓN1
(t),

ΓN1
(t) = 2

∫
d3p

(2π)3

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

〈Γ̃N1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

Γ̃N1
(t),

Γ̃N1
(t) = 2

∫
d3p

(2π)3

f eq
! f eq

H

f eq
N1

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

(28)

1For simplicity, we neglect here the fact that thermal effects may kinematically open new channels
beyond those at zero temperature, see [2].
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Assign to the interaction points a + or - sign in all 
possible manners and sum all the possible diagrams.

The BE’s are obtained starting from the Dyson’s equations for propagators. We need to 
compute the self-energy functions explicitly for our case.

(
i
→

/∂ x −M1

)
G<

N1
(x, y) = −

∫
d4z

[
−Σt

N1
(x, z)G<

N1
(z, y) + Σ<

N1
(x, z)Gt̄

N1
(z, y)

]

=

∫
d3z

∫ t

0

dtz
[
Σ>

N1
(x, z)G<

N1
(z, y) − Σ<

N1
(x, z)G>

N1
(z, y)

]
.

(24)

On the left-hand side of this equation we perform a number of operation. We first go to
the center-of-mass coordinates and perform a Fourier transform over the spatial internal

coordinates "r. We then insert the expression in Eq. (14) for the corresponding RH neutrino
Green’s function. The real part of the left-hand side of Eq. (24) gives, after setting x = y,

projecting onto the positive frequencies and taking the trace over the spinorial indeces

Re

[
Tr

(
i

2

→

/∂X

i

2ωN1

(/k + M1) fN1

)]
= −

∂fN1
(k, t)

∂t
, (25)

The self-energy of the RH neutrino is given diagrammatically in Fig. 2 (where $ indi-
cates the generic lepton doublet in the loop) and reads

Σ>,<
N1

(x, y) = i G>,<
H (x, y)G>,<

! (x, y). (26)

Inserting in the right-hand side of Eq. (24) the expressions in Eqs. (11) and (14) for the
Higgs and lepton doublet Green’s functions and taking the real part of it and the trace

of the spinorial indices, we find

∂fN1
(k, t)

∂t
= −2

∫ t

0

dtz

∫
d3p

(2π)3

1

2ω!(p)

1

2ωH(k − p)

1

ωN1
(k)

|M(N1 → $H)|2

× [fN1
(k, t)(1 − f!(p, t))(1 + fH(k − p, t))

−f!(p, t)fH(k − p, t)(1 − fN1
(k, t))]

× cos [(ωN1
(k) − ω!(p) − ωH(k − p)) (t − tz)]

$ −2

∫ t

0

dtz

∫
d3p

(2π)3

1

2ω!(p)

1

2ωH(k − p)

1

ωN1
(k)

|M(N1 → $H)|2

× (fN1
(k, t) − f eq

! (p)f eq
H (k − p))

× cos [(ωN1
(k) − ω!(p) − ωH(k − p)) (t − tz)] . (27)

We have made the assumption that the relaxation timescale for the distribution func-

tions are longer than the timescale of the non-local kernels so that they can be extracted
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1For simplicity, we neglect here the fact that thermal effects may kinematically open new channels
beyond those at zero temperature, see [2].
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πδ(EN1 − E! − EH)

∝
∫ t

0
dtz cos[(EN1 − E! − EH))(t− tz)]

Quantum Boltzmann Equations

Only on-shell processes contribute
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We have made the assumption that the relaxation timescale for the distribution func-

tions are longer than the timescale of the non-local kernels so that they can be extracted
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where 〈ΓN1
(t)〉 is the time-dependent thermal average of the Lorentz-dilated decay width.

Integrating over large times, t → ∞, thereby replacing the cosines by energy conserving
delta functions [29],

∫ ∞

0

dtz cos [(ωN1
− ω! − ωH) (t − tz)] = πδ (ωN1

− ω! − ωH) , (29)

we find that the two averaged rates 〈ΓN1
〉 and 〈Γ̃N1

〉 coincide and we recover the usual

classical Boltzmann equation for the RH distribution function

∂nN1

∂t
= −〈ΓN1

〉
(
nN1

− neq
N1

)
,

〈ΓN1
〉 =

∫
d3k

(2π)3

f eq
N1

neq
N1

∫
d3p

(2π)3

|M(N1 → %H)|2

2ω!2ωHωN1

(2π)δ (ωN1
− ω! − ωH) .

(30)

Taking the time interval to infinity, namely implementing Fermi’s golden rule, results in

neglecting memory effects, which in turn results only in on-shell processes contributing to
the rate equation. The main difference between the classical and the quantum Boltzmann

equations can be traced to memory effects and to the fact that the time evolution of the
distribution function is non-Markovian. The memory of the past time evolution translates
into off-shell processes. It would be certainly interesting to perform a numerical study to

assess the impact of the memory effects onto the final baryon asymmetry.

5 The quantum Boltzmann equation for the lepton

asymmetry and the CP asymmetry

Our goal is now to compute the right-hand side of the Eq. (22) describing the evolution

of the lepton asymmetry following the CTP approach. We start with the CP asymmetry
source term. We will see that the CP asymmetry manifests memory effects, evolves in
time and at large times may resemble the usual CP asymmetry expression existing in the

literature only if certain conditions are satisfied.

As we have already mentioned, Eq. (22) contains the information about all possible
interesting processes for leptogenesis, e.g. ∆L = 1 inverse decays, ∆L = 2 scatterings and

so on. To extract the CP asymmetry, we first consider the “wave”-diagram contribution
to the lepton doublet %i (see Fig. 3). From the previous discussion, we know that this

diagram is in fact a sum of diagrams obtained assigning to the interaction points a plus

12
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〈Γ̃N1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

Γ̃N1
(t),

Γ̃N1
(t) = 2

∫
d3p

(2π)3

f eq
! f eq

H

f eq
N1

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

(28)

1For simplicity, we neglect here the fact that thermal effects may kinematically open new channels
beyond those at zero temperature, see [2].
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Figure 2: One-loop self-energy of the lightest RH neutrino.

out of the time integral. This allows to think the distributions as functions of the center-

of-mass time only. We have set to zero the damping rates of the particles in Eq. (14)
and retained only those cosines giving rise to energy delta functions that can be satis-

fied1. Under these assumptions, the distribution function may be taken out of the time
integral, leading – at large times – to the so-called Markovian description. The kinetic

equation (27) has an obvious interpretation in terms of gain minus loss processes, but
the retarded time integral and the cosine function replace the familiar energy conserving
delta functions. In the second passage, we have also made the usual assumption that all

distribution functions are smaller than unity and that those of the Higgs and lepton dou-
blets are in equilibrium and much smaller than unity, f!fH ! f eq

! f eq
H . Elastic scatterings

are typically fast enough to keep kinetic equilibrium. For any distribution function we
may write f = (n/neq)f eq, where n denotes the total number density. Therefore, Eq. (27)
can be rewritten as

∂nN1

∂t
= −〈ΓN1

(t)〉nN1
+ 〈Γ̃N1

(t)〉neq
N1

,

〈ΓN1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

ΓN1
(t),

ΓN1
(t) = 2

∫
d3p

(2π)3

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

〈Γ̃N1
(t)〉 =

∫ t

0

dtz

∫
d3k

(2π)3

f eq
N1

neq
N1

Γ̃N1
(t),

Γ̃N1
(t) = 2

∫
d3p

(2π)3

f eq
! f eq

H

f eq
N1

|M(N1 → #H)|2

2ω!2ωHωN1

cos [(ωN1
− ω! − ωH) (t − tz)] ,

(28)

1For simplicity, we neglect here the fact that thermal effects may kinematically open new channels
beyond those at zero temperature, see [2].
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Assign to the interaction points a + or - sign in all 
possible manners and sum all the possible diagrams.

The BE’s are obtained starting from the Dyson’s equations for propagators. We need to 
compute the self-energy functions explicitly for our case.

(
i
→

/∂ x −M1

)
G<

N1
(x, y) = −

∫
d4z

[
−Σt

N1
(x, z)G<

N1
(z, y) + Σ<

N1
(x, z)Gt̄

N1
(z, y)

]

=

∫
d3z

∫ t

0

dtz
[
Σ>

N1
(x, z)G<

N1
(z, y) − Σ<

N1
(x, z)G>

N1
(z, y)

]
.

(24)

On the left-hand side of this equation we perform a number of operation. We first go to
the center-of-mass coordinates and perform a Fourier transform over the spatial internal

coordinates "r. We then insert the expression in Eq. (14) for the corresponding RH neutrino
Green’s function. The real part of the left-hand side of Eq. (24) gives, after setting x = y,

projecting onto the positive frequencies and taking the trace over the spinorial indeces

Re

[
Tr

(
i

2

→

/∂X

i

2ωN1

(/k + M1) fN1

)]
= −

∂fN1
(k, t)

∂t
, (25)

The self-energy of the RH neutrino is given diagrammatically in Fig. 2 (where $ indi-
cates the generic lepton doublet in the loop) and reads

Σ>,<
N1

(x, y) = i G>,<
H (x, y)G>,<

! (x, y). (26)

Inserting in the right-hand side of Eq. (24) the expressions in Eqs. (11) and (14) for the
Higgs and lepton doublet Green’s functions and taking the real part of it and the trace

of the spinorial indices, we find

∂fN1
(k, t)

∂t
= −2

∫ t

0

dtz

∫
d3p

(2π)3

1

2ω!(p)

1

2ωH(k − p)

1

ωN1
(k)

|M(N1 → $H)|2

× [fN1
(k, t)(1 − f!(p, t))(1 + fH(k − p, t))

−f!(p, t)fH(k − p, t)(1 − fN1
(k, t))]

× cos [(ωN1
(k) − ω!(p) − ωH(k − p)) (t − tz)]

$ −2

∫ t

0

dtz

∫
d3p

(2π)3

1

2ω!(p)

1

2ωH(k − p)

1

ωN1
(k)

|M(N1 → $H)|2

× (fN1
(k, t) − f eq

! (p)f eq
H (k − p))

× cos [(ωN1
(k) − ω!(p) − ωH(k − p)) (t − tz)] . (27)

We have made the assumption that the relaxation timescale for the distribution func-

tions are longer than the timescale of the non-local kernels so that they can be extracted

10
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〈εV
N1
〉 # −

Im
(
λλ†

)2

12

16π (λλ†)11

M1

M2
. (39)

Finally, the ∆L = 1 inverse decays can be computed along the same lines described

previously by considering the one-loop contribution to the lepton doublet self-energy Σ!i

(see Fig. 5). The equation for the lepton asymmetry then becomes

∂nLi

∂t
= εi

N1
(t)〈ΓN1

〉
(
nN1

− neq
N1

)
− 〈ΓID

N1
(t)〉

neq
N1

2 neq
!i

nLi
(40)

where εi
N1

(t) = εV i
N1

+ εW i
N1

is the total time-dependent CP asymmetry for the flavour i, and

〈ΓID
N1

(t)〉 = 2

∫ t

0

dtz

∫
d3k

(2π)3

f eq
!i

f eq
H

neq
N1

∫
d3p

(2π)3

|M(%iH → N1)|
2

2ω!i
2ωH2ωN1

× cos [(ωN1
− ω!i

− ωH) (t − tz)] , (41)

is the time-dependent thermal average of the inverse-decay interaction rate.

6 Conclusions

The quantum Boltzmann equations derived in this paper can be used to perform a thor-
ough investigation of the impact of flavour effects onto leptogenesis and, on more general

grounds, to provide a quantitative relation between the light neutrino properties and the
final baryon asymmetry. It would be interesting to see how large are the corrections to
the baryon asymmetry once the non-Markovian description is adopted, including mem-

ory effects and off-shell corrections. They may lead to the slowdown of the relaxation
processes thus keeping the system out of equilibrium for longer times and therefore to an

enhancement of the final baryon asymmetry. It would also be of interest to see the impact
of our results on the transition between one flavour and two flavours as we discussed in

the Introduction.

One of the main results of our investigation is that the CP asymmetry turns out to
be a function of time and its value at a given instant of time depends on the past history
of the system, see for instance Eq. (34). This result is relevant when the timescale of the

evolution of the CP asymmetry is larger than the timescale of the other processes. We
have pointed out that this is relevant when the asymmetry is generated by the decays of

two nearly mass-degenerate heavy states and the resonant effects are exploited.
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Figure 4: The vertex-diagram contributing to the two-loop self-energy of the lepton dou-
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Figure 5: One-loop diagram contributing to the self-energy of the lepton doublet.

degenerate in mass and oscillate into one another with a timescale given by the inverse
of the mass difference. This is the case of resonant leptogenesis [31] and soft leptogenesis

[32]. From Eq. (35) it is manifest that the CP asymmetry itself oscillates with the very
same timescale and such a dependence may or may not be neglected depending upon the

rates of the other processes in the plasma. If ΓN1
>
∼ ΓN2

, the time dependence of the CP
asymmetry may not be neglected.

The expression (35) can also be used, once it is divided by a factor 2 (because in the

wave diagram also the charged states of Higgs and lepton doublets may propagate) and
the limit M2 " M1 is taken, for the CP asymmetry contribution from the vertex diagram
(see Fig. 4)

εV
N1

(t) # −
Im

(
λλ†

)2

12

16π (λλ†)11

M1

M2

(
2 sin2

[
M2t

2

]
−

ΓN2

M2
sin [M2t]

)
, (38)

The timescale for this CP asymmetry is ∼ M2 and much larger than any other timescale
in the dynamics. Therefore, one can safely average over many oscillations, getting the

expression present in the literature
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Figure 3: The wave-diagram contributing to the two-loop self-energy of the lepton doublet.

×

∫
d3p

(2π)3

1 − f eq
!j

(p) + f eq
H (k − p)

2ω!j
(p)2ωH(k − p)ωN1

(k)

∫
d3q

(2π)3

1 − f eq
!i

(q) + f eq
H (k − q)

2ω̄!i
(q)2ω̄H(k − q)ωN2

(k)

× sin
(
ωN1

(t − t1) +
(
ω!j

+ ωH

)
(t1 − t2) + ωN2

(t2 − tz) + (ω̄!i
+ ω̄H) (tz − t)

)

× Tr
(
M1PL/pM2/q

)
, (33)

where, to avoid double counting, we have not inserted the decay rates in the propagators

of the initial and final states and, for simplicity, we have assumed that the damping rates
of the lepton doublets and the Higgs field are constant in time. This should be a good
approximation as the damping rate are to be computed for momenta of order of the mass

of the RH neutrinos. As expected from first principles, we find that the CP asymmetry
is a function of time and its value at a given instant depends upon the previous history

of the system.

Performing the time integrals and retaining only those pieces which eventually give rise
to energy-conserving delta functions in the Markovian limit (as in the previous Section,
we do not include here the new channels that thermal effects may eventually open), we

obtain

εW i
N1

(t) = −
4

〈ΓN1
〉

3∑

j=1

Im
(
λ1iλ1jλ

†
j2λ

†
i2

)

×

∫ t

0

dtz
cos [(ωN1

− ω̄!i
− ω̄H) (t − tz)](

Γ2
N2

+ (ωN2
− ωN1

)2
) (

(Γ!j
+ ΓH)2 + (ωN1

− ω!j
− ωH)2

)
∫

d3k

(2π)3

f eq
N1

neq
N1

× (Γ!j
+ ΓH)

(
2 (ωN2

− ωN1
) sin2

[
(ωN2

− ωN1
)tz

2

]
− ΓN2

sin [(ωN2
− ωN1

)tz]

)
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degenerate in mass and oscillate into one another with a timescale given by the inverse
of the mass difference. This is the case of resonant leptogenesis [31] and soft leptogenesis

[32]. From Eq. (35) it is manifest that the CP asymmetry itself oscillates with the very
same timescale and such a dependence may or may not be neglected depending upon the

rates of the other processes in the plasma. If ΓN1
>
∼ ΓN2

, the time dependence of the CP
asymmetry may not be neglected.

The expression (35) can also be used, once it is divided by a factor 2 (because in the

wave diagram also the charged states of Higgs and lepton doublets may propagate) and
the limit M2 " M1 is taken, for the CP asymmetry contribution from the vertex diagram
(see Fig. 4)

εV
N1

(t) # −
Im

(
λλ†

)2

12

16π (λλ†)11

M1

M2

(
2 sin2

[
M2t

2

]
−

ΓN2

M2
sin [M2t]

)
, (38)

The timescale for this CP asymmetry is ∼ M2 and much larger than any other timescale
in the dynamics. Therefore, one can safely average over many oscillations, getting the

expression present in the literature
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〈εV
N1
〉 # −

Im
(
λλ†

)2

12

16π (λλ†)11

M1

M2
. (39)

Finally, the ∆L = 1 inverse decays can be computed along the same lines described

previously by considering the one-loop contribution to the lepton doublet self-energy Σ!i

(see Fig. 5). The equation for the lepton asymmetry then becomes

∂nLi

∂t
= εi

N1
(t)〈ΓN1

〉
(
nN1

− neq
N1

)
− 〈ΓID

N1
(t)〉

neq
N1

2 neq
!i

nLi
(40)

where εi
N1

(t) = εV i
N1

+ εW i
N1

is the total time-dependent CP asymmetry for the flavour i, and

〈ΓID
N1

(t)〉 = 2

∫ t

0

dtz

∫
d3k

(2π)3

f eq
!i

f eq
H

neq
N1

∫
d3p

(2π)3

|M(%iH → N1)|
2

2ω!i
2ωH2ωN1

× cos [(ωN1
− ω!i

− ωH) (t − tz)] , (41)

is the time-dependent thermal average of the inverse-decay interaction rate.

6 Conclusions

The quantum Boltzmann equations derived in this paper can be used to perform a thor-
ough investigation of the impact of flavour effects onto leptogenesis and, on more general

grounds, to provide a quantitative relation between the light neutrino properties and the
final baryon asymmetry. It would be interesting to see how large are the corrections to
the baryon asymmetry once the non-Markovian description is adopted, including mem-

ory effects and off-shell corrections. They may lead to the slowdown of the relaxation
processes thus keeping the system out of equilibrium for longer times and therefore to an

enhancement of the final baryon asymmetry. It would also be of interest to see the impact
of our results on the transition between one flavour and two flavours as we discussed in

the Introduction.

One of the main results of our investigation is that the CP asymmetry turns out to
be a function of time and its value at a given instant of time depends on the past history
of the system, see for instance Eq. (34). This result is relevant when the timescale of the

evolution of the CP asymmetry is larger than the timescale of the other processes. We
have pointed out that this is relevant when the asymmetry is generated by the decays of

two nearly mass-degenerate heavy states and the resonant effects are exploited.
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degenerate in mass and oscillate into one another with a timescale given by the inverse
of the mass difference. This is the case of resonant leptogenesis [31] and soft leptogenesis

[32]. From Eq. (35) it is manifest that the CP asymmetry itself oscillates with the very
same timescale and such a dependence may or may not be neglected depending upon the

rates of the other processes in the plasma. If ΓN1
>
∼ ΓN2

, the time dependence of the CP
asymmetry may not be neglected.

The expression (35) can also be used, once it is divided by a factor 2 (because in the

wave diagram also the charged states of Higgs and lepton doublets may propagate) and
the limit M2 " M1 is taken, for the CP asymmetry contribution from the vertex diagram
(see Fig. 4)

εV
N1

(t) # −
Im

(
λλ†

)2

12

16π (λλ†)11

M1

M2

(
2 sin2

[
M2t

2

]
−

ΓN2

M2
sin [M2t]

)
, (38)

The timescale for this CP asymmetry is ∼ M2 and much larger than any other timescale
in the dynamics. Therefore, one can safely average over many oscillations, getting the

expression present in the literature
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×

∫
d3p

(2π)3

1 − f eq
!j

(p) + f eq
H (k − p)

2ω!j
(p)2ωH(k − p)ωN1

(k)

∫
d3q

(2π)3

1 − f eq
!i

(q) + f eq
H (k − q)

2ω̄!i
(q)2ω̄H(k − q)ωN2

(k)

× sin
(
ωN1

(t − t1) +
(
ω!j

+ ωH

)
(t1 − t2) + ωN2

(t2 − tz) + (ω̄!i
+ ω̄H) (tz − t)

)

× Tr
(
M1PL/pM2/q

)
, (33)

where, to avoid double counting, we have not inserted the decay rates in the propagators

of the initial and final states and, for simplicity, we have assumed that the damping rates
of the lepton doublets and the Higgs field are constant in time. This should be a good
approximation as the damping rate are to be computed for momenta of order of the mass

of the RH neutrinos. As expected from first principles, we find that the CP asymmetry
is a function of time and its value at a given instant depends upon the previous history

of the system.

Performing the time integrals and retaining only those pieces which eventually give rise
to energy-conserving delta functions in the Markovian limit (as in the previous Section,
we do not include here the new channels that thermal effects may eventually open), we

obtain

εW i
N1

(t) = −
4

〈ΓN1
〉

3∑

j=1

Im
(
λ1iλ1jλ

†
j2λ

†
i2

)

×

∫ t

0

dtz
cos [(ωN1

− ω̄!i
− ω̄H) (t − tz)](

Γ2
N2

+ (ωN2
− ωN1

)2
) (

(Γ!j
+ ΓH)2 + (ωN1

− ω!j
− ωH)2

)
∫

d3k

(2π)3

f eq
N1

neq
N1

× (Γ!j
+ ΓH)

(
2 (ωN2

− ωN1
) sin2

[
(ωN2

− ωN1
)tz

2

]
− ΓN2

sin [(ωN2
− ωN1

)tz]

)
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degenerate in mass and oscillate into one another with a timescale given by the inverse
of the mass difference. This is the case of resonant leptogenesis [31] and soft leptogenesis

[32]. From Eq. (35) it is manifest that the CP asymmetry itself oscillates with the very
same timescale and such a dependence may or may not be neglected depending upon the

rates of the other processes in the plasma. If ΓN1
>
∼ ΓN2

, the time dependence of the CP
asymmetry may not be neglected.

The expression (35) can also be used, once it is divided by a factor 2 (because in the

wave diagram also the charged states of Higgs and lepton doublets may propagate) and
the limit M2 " M1 is taken, for the CP asymmetry contribution from the vertex diagram
(see Fig. 4)

εV
N1

(t) # −
Im

(
λλ†

)2

12

16π (λλ†)11

M1

M2

(
2 sin2

[
M2t

2

]
−

ΓN2

M2
sin [M2t]

)
, (38)

The timescale for this CP asymmetry is ∼ M2 and much larger than any other timescale
in the dynamics. Therefore, one can safely average over many oscillations, getting the

expression present in the literature
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The usual BE is recovered in the               limit t→∞

Time-dependent
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∆M ≡MN2 −MN1

εi
N1

[
2 sin2

(
1
2
∆Mt

)
− Γ

∆M
sin (∆Mt)

]

It averages to        as t→∞εi
N1
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The typical time-scale to build up coherently the CP asymmetry 
is 

If the time-scale associated with the other processes relevant for 
leptogenesis (e.g.            ) is much larger than               , the CP 
asymmetry will average to a constant              no significant effect.

If the interactions are faster than                            the effect is 
expected to be relevant.

This condition is attained in Resonant (and MLFV) leptogenesis 

(∆M)−1(ΓN )−1

(∆M)−1

Applications

8 /13

When is this new effect important?

The main effect of the quantum approach is the time-dependence 
of the CP asymmetry.

∼ (∆M)−1
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The RH neutrinos are nearly mass-degenerate and 

The CP asymmetry is resonantly enhanced, thus making leptogenesis 
viable at T as low as TeV (relaxed tension with “gravitino problem”).

We found                               enhancements wrt the usual case 
with no quantum effects (when at least one flavour is weakly 
coupled           ).

The numerical results have been confirmed by analytical 
approximations. 

∆M ∼ ΓN1 ∼ ΓN2

RESONANT LEPTOGENESIS 
and QUANTUM EFFECTS  (1)

9 /13

Applications

K ! 1
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Figure 2: The (absolute value) of the lepton asymmetry with the time dependence in the CP asymmetry
(blue) and without (green), for ∆M/ΓN2

= ΓN2
/ΓN1

= 1 and for K = 10−1.
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Figure 3: The (absolute value) of the final lepton asymmetry with the time dependence in the CP
asymmetry (blue) and without (green) for ∆M/ΓN2

= ΓN2
/ΓN1

= 1 as a function of K.

small corrections

YL !
0.3 ε

g∗K1.16
+ O

(

e−
3
2
(ln K)2 1

K1/2

)

. (6)

The weak wash-out regime is much more interesting. Let us first remind the reader
what happens in the usual case where the time dependence of the CP asymmetry is

neglected. The final lepton asymmetry results from a cancellation between the (anti-)
asymmetry generated when RH neutrinos are initially produced and the lepton asymme-

try produced when they finally decay. It is useful to define the value zeq " 1 as the
“time” when the N -abundance reaches the equilibrium abundance: YN(zeq) = Y eq

N (zeq).

Since
∫ zeq

0 dz′(z′)3K1(z′) ! 3π/2, one finds that zeq is defined implicitly by the relation

z3/2
eq e−zeq ! (3πK/2). For z <

∼ zeq, inverse decays dominate over decays and YN $ Y eq
N .

6
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Figure 1: The (absolute value) of the lepton asymmetry with the time dependence in the CP asymmetry
(blue) and without (green), for ∆M/ΓN2

= ΓN2
/ΓN1

= 1 and for K = 10.

than ∼ 1/∆M , the CP asymmetry should average to the constant value ε quoted in the

literature [14]. However, if the timescale of the evolution of the CP asymmetry is larger
than or of the order of the timescale of the other processes, the time dependence of the

CP asymmetry may not be neglected. This is precisely what happens in the resonant
leptogenesis scenario where ∆M ∼ ΓN2

∼ ΓN1
.

Since the strength of the interaction rates is dictated by the parameter K, we expect
that in the strong wash-out regime, K " 1, the effect of the time dependence of the

CP asymmetry is negligible. Due to the rapidly oscillating CP asymmetry, the lepton
asymmetry should also rapidly oscillate and – at large times – reproduce the value usually

quoted in the literature. On the contrary, in the case of weak or mild wash-out, K <
∼ 1,

the effect of the time dependence of the CP asymmetry should be magnified since the CP

asymmetry oscillates with a period comparable to the time scale of the other interactions.

The numerical solutions of the Boltzmann equations support these expectations. Figs. 1
and 2 show the evolution of the lepton asymmetry with and without the time depen-
dence in the CP asymmetry for two representative cases of strong and weak wash-out,

respectively. Fig. 3 shows the final baryon asymmetry computed taking into account and
neglecting the time dependence in the CP asymmetry as a function of K.

The numerical results can be analytically reproduced. In the strong wash-out regime,

K " 1, (YN − Y eq
N ) $ (zK2(z)/4Kg∗) and the lepton asymmetry reads

YL $
1

2g∗

∫ ∞

0

dz ε(z)z2K1(z)e−
K

2

R

∞

z
dz′(z′)3K1(z′). (5)

Using the stepeest descent method, one can easily show that the final lepton asymmetry

is equal to the one computed neglecting the time dependence in the CP asymmetry up to

5

K=0.1 (weak washout) K=10 (strong washout)
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Figure 2: The (absolute value) of the lepton asymmetry with the time dependence in the CP asymmetry
(blue) and without (green), for ∆M/ΓN2

= ΓN2
/ΓN1

= 1 and for K = 10−1.
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Figure 3: The (absolute value) of the final lepton asymmetry with the time dependence in the CP
asymmetry (blue) and without (green) for ∆M/ΓN2

= ΓN2
/ΓN1

= 1 as a function of K.

small corrections

YL !
0.3 ε

g∗K1.16
+ O

(

e−
3
2
(ln K)2 1

K1/2

)

. (6)

The weak wash-out regime is much more interesting. Let us first remind the reader
what happens in the usual case where the time dependence of the CP asymmetry is

neglected. The final lepton asymmetry results from a cancellation between the (anti-)
asymmetry generated when RH neutrinos are initially produced and the lepton asymme-

try produced when they finally decay. It is useful to define the value zeq " 1 as the
“time” when the N -abundance reaches the equilibrium abundance: YN(zeq) = Y eq

N (zeq).

Since
∫ zeq

0 dz′(z′)3K1(z′) ! 3π/2, one finds that zeq is defined implicitly by the relation

z3/2
eq e−zeq ! (3πK/2). For z <

∼ zeq, inverse decays dominate over decays and YN $ Y eq
N .

6

RESONANT LEPTOGENESIS 
and QUANTUM EFFECTS  (2)

Some numerical simulations:

green: 
blue: ε(z)

ε̄K ≡ ΓD

H

∣∣∣∣
z=1

z = MN/T
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MLFV  LEPTOGENESIS 
and QUANTUM EFFECTS  (1)

11/13

Applications

MLFV hypothesis: the charged-lepton and neutrino Yukawa 
couplings are the only sources of lepton-flavour symmetry breaking 
(extension of MFV to the lepton sector)

In the limit of vanishing Yukawas, the             symmetry is exact and 
RH neutrinos are degenerate at a common scale        .

The degeneracy is lifted only by corrections induced by Yukawa 
couplings.

We end up with a constrained version of resonant leptogenesis, 
where we expect quantum effects to be important.

O(3)N

M0
N

MN = M0
N

[
1 + c(1)

(
λ0λ0† + (λ0λ0†)T

)
+ · · ·

]

[Cirigliano, Grinstein, Isidori, Wise 2005]
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Applications

c(1) = 2× 10−5 c(1) = 6× 10−3

!6 !5 !4 !3 !2 !1
Log10 !m1 "eV#

0.001

0.1

10

1000

Η B
q
u
"Η Bcl

Φ1$10!4 , Φ2$Φ3$0, NH

!6 !5 !4 !3 !2 !1
Log10 !m3 "eV#

50

100

500

1000

5000

Η B
q
u
"Η Bcl

Φ1$10!4 , Φ2$Φ3$0, IH

!6 !5 !4 !3 !2 !1
Log10 !m1 "eV#

1."10!6

0.0001

0.01

1

100

10000

Η
B
"
1
0
1
0

Φ1%10!4 , Φ2%Φ3%0, NH

!6 !5 !4 !3 !2 !1
Log10 !m3 "eV#

1."10!6

0.0001

0.01

1

100

Η
B
"
1
0
1
0

Φ1%10!4 , Φ2%Φ3%0, IH

Andrea De Simone     



CONCLUSIONS

Leptogenesis is a viable and attractive candidate to account for the 
matter-antimatter asymmetry of the Universe.

It requires a “minimal” amount of beyond-SM physics: heavy RH 
neutrinos (which may also explain the small neutrino masses).

In scenarios with nearly degenerate RH neutrinos (like resonant 
leptogenesis) the quantum effects play an important role and must 
be taken into account.

We extended the semi-classical treatments used so far, and derived a 
set of quantum Boltzmann equations.

The quantum approach mainly leads to a time-dependent CP 
asymmetry, and the dynamics of the system manifests “memory”.
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