New Belle results on $B \to D^{**} \ell \nu$ decays.

Dmitri Liventsev* (ITEP, Moscow)

March 04, 2008

* e-mail:livent@itep.ru

The XLIIIrd Rencontres de Moriond, EW – March 04, 2008

Dmitri Liventsev – $B \rightarrow D^{**} \ell \nu$ – 1 / 13

D** spectroscopy

Spectroscopy

- Existing results
- Belle analysis
- Comparison
- Helicity
- Conclusions

 D^{**} are *P*-wave excitations of *D*-mesons. HQET predicts four D^{**} mesons: two narrow and two wide. They were observed and studied (*e.g.* hep-ex/0307021, hep-ex/0611054).

Existing results

Spectroscopy

Existing results

- Belle analysis
- Comparison
- Helicity
- Conclusions

Semileptonic *B* decays to narrow D_1 and D_2^* were studied by a number of experiments, mostly in $B \rightarrow D^* \pi^+ \ell \nu$ channel. Some assumptions were common:

 $\begin{aligned} \mathcal{B}(b \to B) &= 37.8 - 39.7\% \\ \mathcal{B}(D_1 \to D^* \pi^+) &= 66.7\% \\ \mathcal{B}(D_2^* \to D^* \pi^+) &= 20\% \end{aligned}$

Exp.	Pub.	Environment	$\mathcal{B}(B \to D_1 \ell \nu)$	$\mathcal{B}(B \to D_2^* \ell \nu)$
ARGUS	1993	e^+e^- at $\Upsilon(4S)$	$\mathcal{B}(B \to D^{**}\ell\nu)$	$(r) = 2.7 \pm 0.7^{\dagger}$
ALEPH	1996	e^+e^- at Z	0.74 ± 0.16	< 0.2
CLEO	1997	e^+e^- at $\Upsilon(4S)$	0.56 ± 0.16	< 0.8
OPAL	2002	e^+e^- at Z	1.05 ± 0.35	< 1.85
DELPHI	2005	e^+e^- at Z	0.33 ± 0.17	0.37 ± 0.17
DØ	2005	$par{p}$ at 1.96 GeV	0.33 ± 0.06	0.44 ± 0.16

DELPHI: $\mathcal{B}(B \to D_1^* \ell \nu) = (1.25 \pm 0.37)\%$ $\mathcal{B}(B \to D_0^* \ell \nu) = (0.42 \pm 0.40)\%$

[†] D^{**} is "not D, D^{**} " here

Existing results: Figures

Spectroscopy

- Belle analysis
- Comparison
- ♦ Helicity
- Conclusions

Dmitri Liventsev – $B \rightarrow D^{**} \ell \nu$ – 4 / 13

Belle analysis: method

Signal B_{sl} is reconstructed as D^(*)(π)ℓ; the rest of the event is reconstructed as a tagging B_{tag} as D^(*)ρ⁺, D^(*)nπ (n ≤ 6); recoil mass, i.e., neutrino mass, is calculated:

$$M_{\nu}^2 = (P_{\text{beam}} - P_{B_{\text{tag}}} - P_{B_{\text{sl}}})^2$$

- Backgrounds are subtracted using data: by $\Delta E \equiv E_{tag} E_{beam}$ and $M(D_{sl})$ sidebands and $D^{(*)}\pi h^+$ analysis (lepton fakes); feed-down ($B \rightarrow D^*(\pi) \ell \nu$ reconstructed as $B \rightarrow D(\pi) \ell \nu$ with lost neutral) is subtracted using MC;
- Branching ratios are calculated relative to the normalization modes $B \rightarrow D\ell\nu$ to cancel out the $B_{\rm tag}$ reconstruction efficiency.

SpectroscopyExisting results

Belle analysis
 Comparison
 Helicity

Conclusions

Belle analysis: M_{ν}^2 distributions

Spectroscopy

Existing results

✤ Belle analysis

- Comparison
- ♦ Helicity
- Conclusions

 $\mathcal{L} \sim 605 \mathrm{fb}^{-1}$

 $\Delta E + M(D) - \Delta E, M(D)$ sidebands are shown in green

Lepton fakes are shown in red

Feed-down from $B \rightarrow D^* \pi \ell \nu$ taken from MC and normalized to data is shown in yellow

In the following analysis we use events from $|M_{\nu}^2| < 0.1 \,\mathrm{GeV}^2$

 $B^0 \to \bar{D}^0 \pi^- \ell^+ \nu$

 $B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu$

Belle analysis: $D\pi$ invariant mass

Belle analysis: $D^*\pi$ invariant mass

Belle analysis: results

Spectroscopy

Existing results

✤ Belle analysis

- Comparison
- ♦ Helicity
- Conclusions

 $\mathcal{B}(\text{mode}) \equiv \mathcal{B}(B \to D^{**} \ell \nu) \times \mathcal{B}(D^{**} \to D^{(*)} \pi^+)$

 $D\pi$ invariant mass study

Mode	Yield	B, %	Signif.
$B^+ \to \bar{D}_0^{*0} \ell^+ \nu$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	5.4
$B^+ \to \bar{D}_2^{*0} \ell^+ \nu$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	8.0
$B^0 \to D_0^{*-} \ell^+ \nu$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	2.6
$B^0 \to D_2^{*-} \ell^+ \nu$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	5.5

$D^*\pi$ invariant mass study

Mode	Yield	B, %	Signif.
$B^+ \to \bar{D}_1^{*0} \ell^+ \nu$	-5 ± 11	< 0.07 @ 90% C.L.	
$B^+ \to \bar{D}_1^0 \ell^+ \nu$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	6.7
$B^+ \to \bar{D}_2^{*0} \ell^+ \nu$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	3.2
$B^0 \to D_1^{*-} \ell^+ \nu$	4 ± 8	< 0.5 @ 90% C.L.	
$B^0 \to D_1^- \ell^+ \nu$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	2.9
$B^0 \to D_2^{*-} \ell^+ \nu$	1 ± 6	< 0.3 @ 90% C.L.	

Comparison

Spectroscopy

Existing results

Belle analysis

Comparison

♦ Helicity

Conclusions

 $\mathcal{B}(D_1 \to D^* \pi^+) = 66.7\%$ $\mathcal{B}(D_2^* \to D^* \pi^+) = 20\%$

Exp.	$\mathcal{B}(B \to D_1 \ell \nu)$	$\mathcal{B}(B o D_2^* \ell u)$
ALEPH	0.74 ± 0.16	< 0.2
CLEO	0.56 ± 0.16	< 0.8
OPAL	1.05 ± 0.35	< 1.85
DELPHI	0.33 ± 0.17	0.37 ± 0.17
DØ	0.33 ± 0.06	0.44 ± 0.16
Belle	0.65 ± 0.11	0.47 ± 0.09 (from $D\pi^+$)
		0.9 ± 0.3 (from $D^*\pi^+$)

DELPHI: $\mathcal{B}(B \to D_1^* \ell \nu) = (1.25 \pm 0.37)\%$ $\mathcal{B}(B \to D_0^* \ell \nu) = (0.42 \pm 0.40)\%$ Belle: < 0.11% $(0.35 \pm 0.05)\%$

Dmitri Liventsev – $B \rightarrow D^{**} \ell \nu$ – 10 / 13

D** helicity distribution

- Existing results
- ✤ Belle analysis
- Comparison

♦ Helicity

Conclusions

$D\pi$ invariant mass is fitted in bins of helicity

Conclusions

- Spectroscopy
- Existing results
- Belle analysis
- Comparison
- Helicity
- Conclusions

- $B \rightarrow D^{**} \ell \nu$ were studied with fully reconstructed B tags;
- $B \to D_2^* \ell \nu, D_2^* \to D\pi$ decay was observed and measured for the first time, its properties were studied;
- A large branching ratio for $B \to D_0^* \ell \nu$ was observed in a fit assuming only D_0^* and D_2^* contributions. This contradicts HQET predictions. However, we do not observe a wide D_1^* in the $D^*\pi$ mode, which should be of the same order. Other possible contributions (D_v^*) ?
- arXiv:0711.3252, submitted to PRD.

Backup slide: *w*-distribution

- Spectroscopy
- Existing results
- Belle analysis
- Comparison
- ♦ Helicity
- Conclusions

