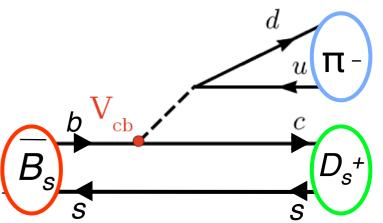


Determination of the *B***s Lifetime Using Hadronic Decays**

Amanda Deisher University of California, Berkeley

for the CDF Collaboration


XLIIIrd Rencontres de MORIOND Electroweak Session La Thuile, March 5, 2008

Motivation

Spectator model: *b* mesons and baryons have same lifetime

Pauli interference, weak annihilation, weak exchange induce **lifetime hierarchy**

$$\mathsf{T}(B_c) < \mathsf{T}(\Lambda_b) < \mathsf{T}(B_s) \cong \mathsf{T}(B^0) < \mathsf{T}(B^+)$$

Experimental status:		<u>τ(B+)</u> τ(B ⁰)	<u>τ(Bs)</u> τ(B ⁰)	$rac{ au(\Lambda_b)}{ au(B^0)}$
	Theory	1.06±0.02	1.00±0.01	0.86±0.05
	Exp.	1.071±0.009	0.939±0.021	0.921±0.036

Tevatron experiments in great position to provide feedback to theorists on $\tau(B_s)!$

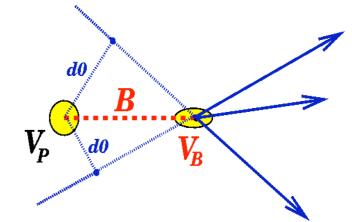
τ(B_s)

D∅ (2006): 1.398 ± 0.044 + 0.028 - 0.025 ps ◀━━ Included in PDG 2007

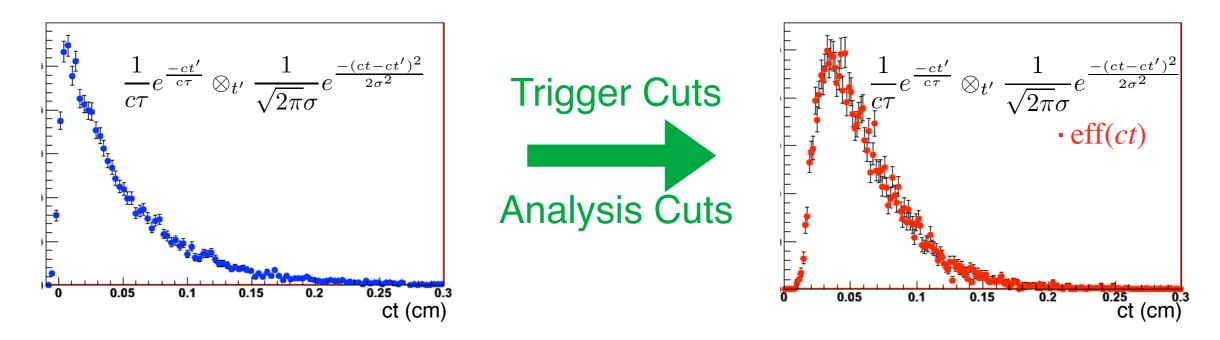
CDF II $J/\psi\phi$ (1.7 fb⁻¹ - Aug 2007): 1.52 ± 0.04 ± 0.02 ps

Today: Update of CDF hadronic measurement

PDG (2007): 1.437 + 0.031 - 0.030 ps


CDF II Hadronic (360 pb⁻¹): $1.60 \pm 0.10 \pm 0.02$ ps

Hadronic Trigger Strategy


Decay mode of interest: $B_s \rightarrow D_s^- (\phi \pi^-) \pi^+$

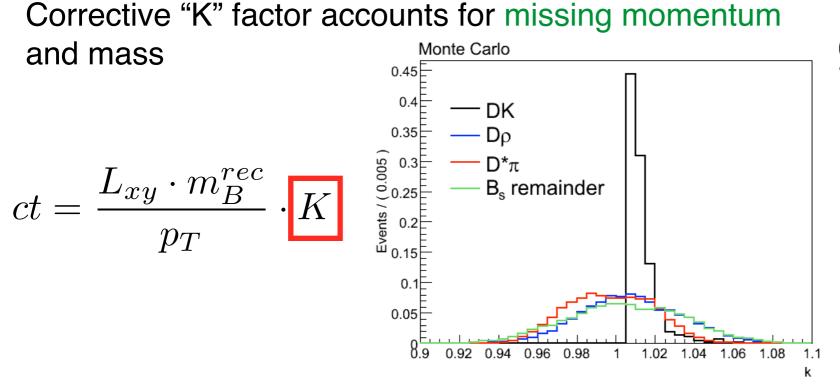
Separating heavy B mesons from prompt backgrounds

- Take advantage of long lifetime
- Trigger on displaced vertex (> 200 μm)

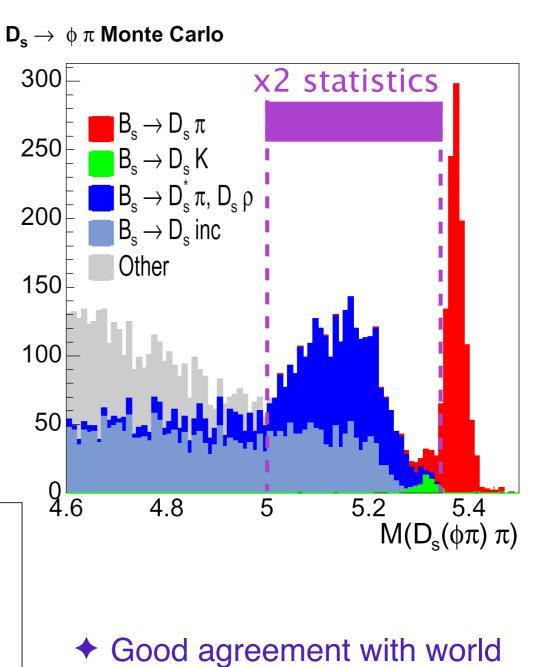
Trigger and analysis selections modify the proper time distribution

Use Monte Carlo to derive "efficiency curve" parameters \rightarrow fixed in final fit to data

$$\operatorname{eff}(ct) = \sum_{i=1}^{3} N_i \cdot (ct - \beta_i)^2 \cdot e^{\frac{-ct}{c\tau_i}} \quad \text{if} \quad ct > \beta_i$$


Partially Reconstructed Decays

Goal: Decrease statistical error (increase statistics)


- 1. Include more luminosity (360 pb⁻¹ \rightarrow 1.3 fb⁻¹)
- 2. Use partially reconstructed decays

 $B_s \rightarrow D_s^- (\phi \pi^-) \pi^+$ sample includes partially reconstructed $B_s \rightarrow D_s^- (\phi \pi^-) X$ decays

- tracks not reconstructed or wrong mass assignment
- doubles the statistics!

Procedure tested extensively on B^0 and B^+ control samples

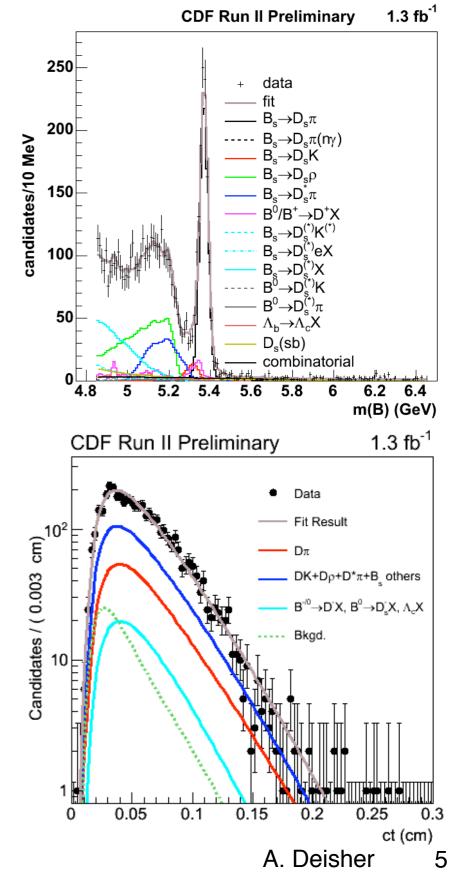
- Good agreement with world averages
- Good agreement between
 FR and PR regions

$B_s \rightarrow D_s^- (\phi \pi^-) X$ Measurement

Procedure

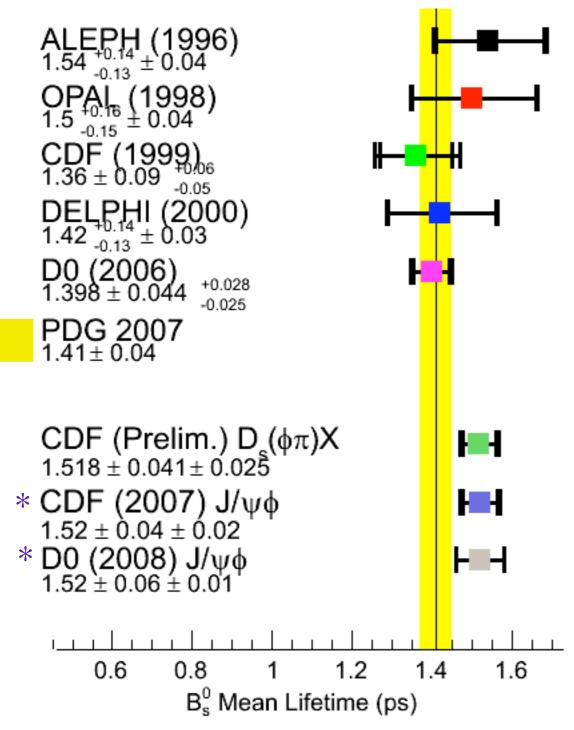
- 1. Perform mass fit to determine fractions
- 2. Fix fractions in lifetime fit. Fit for $c\tau(B_s)$ only

Largest systematic:


- background composition (% prompt)
- background fraction

$\tau(B_s) = 1.518 \pm 0.041 \pm 0.025 \text{ ps}$

Most precise measurement to date!


Good agreement with recent CDF $J/\psi\phi$ result

 $T(B_s) [D_s(\phi\pi)X] / T(B^0) [PDG] = 0.99 \pm 0.03$

Summary

Flavor Specific Measurements

- Theory of *B* hadron lifetimes well developed. Further experimental input needed for *B_s*.
- Trigger on displaced vertices
 - \rightarrow large B_s sample
 - can account for effect on proper time distribution
- Increase statistics using partially reconstructed B_s decays
- ✦ Hadronic lifetime results:
 - Improved exp. uncertainties
 - Good agreement with theory
- ✦ Three new high precision B_s results!