

High energy neutrinos from the cold : status and prospects for the IceCube experiment

Cécile Portello-Roucelle for the IceCube collaboration LBNL

Neutrinos on the rocks

- A pinch of neutrino astronomy...
 - Why ?
 - What are we looking for ?

- ...with IceCube
 - Status of the experiment
 - First analyses with IC-9 (2006 configuration)

The cosmic ray puzzle : understanding astro-accelerators

3

The cosmic ray puzzle : understanding astro-accelerators

Production of HE \mathbf{v} at the source : for *hadronic acceleration processes* $p\mathbf{\gamma}$ interactions [pp interactions] \mathbf{n}^{\pm} decay produces \mathbf{v}

An unique messenger

${f v}$ point back toward their sources + can go through dust

charged CR deviated at low E

γ absorbed at the source+ interaction EM fields

An unique messenger

${f v}$ point back toward their sources + can go through dust

charged CR deviated at low E

γ absorbed at the source+ interaction EM fields

Source region, e.g. surrounding dust clouds, Galaxies... Source, e.g. Supernova, Interstellar Active Galactic Nucleus AGN dust clouds Gamma Ray Burst GRB p,e Air shower Intergalactic magnetic fields B Earth Air shower array Protons / charged particles Air shower Atmosphere

Multimessenger astronomy ?

Astrophysical objects have been studied in different wavelengths

...Observations with neutrino telescopes ?

- Understanding the mechanisms in astrophysical accelerators
- Many sources observed in gamma rays

Possible correlation of UHECR
 arrival directions with AGN
 [Pierre Auger coll. arXiv:0712.2843]

Multimessenger astronomy ?

Astrophysical objects have been studied in different wavelengths

...Observations with neutrino telescopes ?

- Understanding the mechanisms in astrophysical accelerators
- Many sources observed in gamma rays

Possible correlation of UHECR
 arrival directions with AGN
 [Pierre Auger coll. arXiv:0712.2843]

An even broader potential

An even broader potential

IceTop : Surface air shower array Frozen tanks - 2DOMs

Inice :

80 strings each with 60 digital optical modules (DOM)

125m spacing between strings17m between DOMs

Detect \mathbf{v} of all flavors E range : 10^{11} to 10^{20} eV

IceTop : Surface air shower array Frozen tanks - 2DOMs

InIce :

80 strings each with 60 digital optical modules (DOM)

125m spacing between strings17m between DOMs

Detect \mathbf{v} of all flavors E range : 10^{11} to 10^{20} eV

Particle tracking in IceCube : signatures

Particle tracking in IceCube : signatures

Building IceCube

AMANDA 2004-2005 1 string deployed First data astro-ph/0604450 2005-2006 IC-9 IT-16 8 string deployed 2006-2007 IC-22 **IT**-26 13 strings deployed **2007-2008** *IC-40* **IT**-40 18 strings deployed! Commissioning ongoing.

Half the detector is built ! Very steady deployment pace completion in 2011

Looking for ν_{μ} ...

Looking for ν_{μ} ...

2006 data : IC-9 configuration

137.4 days of total livetime 234 events measured expected : $211 \pm 76(syst) \pm 14(stat)$

A real IC-9 **ν**_μ candidate 7 strings hit

< 10% mis-reconstructed downgoing muons predominantly near horizon

We can detect neutrinos !

2006 results with IC9 [Phys. Rev.D76 (2007) 027101]

IC-9 point source search : first IceCube sky map

IC-9 angular resolution 2° - sensitivity comparable to AMANDA II will get better as detector grows

Data Events (points); Galactic Plane (curve)

C.Finley et.al., arXiv:0711.0353 [astro-ph] , p.107-110.

IC-9 point source search : first IceCube sky map

IC-9 angular resolution 2° - sensitivity comparable to AMANDA II will get better as detector grows

Random clustering of background: 60% of simulated background trials (data scrambled in right ascension), have a maximum deviation (anywhere) of 3.35 sigma or greater. Chance probability of the hottest spot = 60% ... not significant.

Search for a diffuse flux of ν with IC-9

Diffuse flux = effective sum from all (unresolved) extraterrestrial sources evidence for hadronic acceleration processes. Possibility of a signal even if sources are too faint to be resolved

Search for a diffuse flux of ν with IC-9

Diffuse flux = effective sum from all (unresolved) extraterrestrial sources evidence for hadronic acceleration processes. Possibility of a signal even if sources are too faint to be resolved

Investigate energy related variables (nb of channels) to look for astrophysical neutrinos !

Search for a diffuse flux of ν with IC-9

Diffuse flux = effective sum from all (unresolved) extraterrestrial sources evidence for hadronic acceleration processes. Possibility of a signal even if sources are too faint to be resolved

Investigate energy related variables (nb of channels) to look for astrophysical neutrinos !

 $E^2 dN/dE < 1.4 \times 10^{-7} GeV/cm^2/s/sr$

IceCube has already better instantaneous sensitivity than AMANDA II 14

Going further IC-22 - 2007 data (downgoing µ)...

Real ν_{μ} candidate with IC22...To be continued...

16

Summary

- The largest neutrino telescope running
- 50% already deployed.
- IceCube will be complete in 2011
- We benefit from AMANDA experience
- Potential in neutrino astronomy and fundamental physics
- IceCube analysis are ongoing and refining :
- IC-9 released, IC-22 under progress
- I km³.yr of integrated exposure in 2009
- → More to come ! Be patient...

"I have done a terrible thing -I have invented a particle that cannot be detected" -- Wolfgang Pauli, 1930

AMANDA II sky map

Achterberg et al. 2007, PRD75 (2007) 102001

AMANDA II sky map

Significance / σ

Achterberg et al. 2007, PRD75 (2007) 102001

THE ICECUBE COLLABORATION

USA:

Bartol Research Institute, Delaware Pennsylvania State University UC Berkeley UC Irvine Clark-Atlanta University University of Maryland IAS, Princeton University of Wisconsin-Madison University of Wisconsin-River Falls Lawrence Berkeley National Lab. University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage

Sweden:

Uppsala Universitet Stockholm Universitet

UK:

Imperial College, London Oxford University Netherlands: Utrecht University Germany: Universität Mainz DESY-Zeuthen Universität Dortmund Universität Wuppertal Universität Berlin MPI Heidelberg RWTH Aachen

Belgium:

Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut Japan: Chiba university

ANTARCTICA Amundsen-Scott Station

New Zealand: University of

33 institutions, ~250 members http://icecube.wisc.edu

98% of DOMs survive to their deployment

Particle tracking (μ) in the detector

tracks lose energy by emitting , e⁺e⁻ pairs and hadronic interactions

Charged particles emit Cherenkov radiation angle $= \text{Cos}^{-1}(1/n) = 41^{\circ}$ The photons scatter (L ~ 25 m) Some (<10⁻⁶) photons are observed in photodetectors We measure points 0-30 meters from the track Angular resolution < 1° for long tracks

Ice optical properties

 $\lambda_{abs} \sim 110m@~400nm$ $\lambda_{sca} \sim ~20m@~400nm$ Scattering length varies from 6 to 30m depending on depth

Measurements: in-situ light sources, atmospheric muons and dust loggers (cm resolution)

Key point for IceCube !

	AMANDA II 5 year	IceCube 9
Livetime	1001 days	137 days (13.7%)
Events	4282	242 (5.6%)
Central 90% Energy Region:		
Atmospheric spectrum [log ₁₀ E/GeV]	2.0 - 3.9	2.3 - 4.2
E ⁻² spectrum [log ₁₀ E/GeV]	3.2 - 6.2	3.6 - 6.3
v_{μ} Sensitivity [(E/GeV) ⁻² (GeV cm ² s) ⁻¹]	0.5 × 10 ⁻⁷	1.2 × 10 ⁻⁷

For comparable livetime, IC-9 would run 7.3 times longer, improving sensitivity

by a factor of ~ $\sqrt{7.3}$ = 2.7, reducing upper limit to ~ 0.45 × 10⁻⁷

Combination of many factors (poor angular resolution except along detector axis; reduced effective area at lower energy, increased at higher energy) results in detector with point source sensitivity comparable to AMANDA II.

IceCube : a neutrino telescope

- Angular resolution from 0.8° to 2° (angle μ / ν_μ ~0.8° above TeV)
 IC-9 ~2°
- Sky averaged sensitivity to a source with E⁻² spectrum :

12. 10⁻¹¹ TeV⁻¹.cm⁻².s⁻¹ Comparable to AMANDA-II 2005 sensitivity

IC9 point source analysis (bis)

IC-9 searches with a priori source locations

26 a priori Source Locations

Largest deviation from bkg : 1.77σ in direction of the Crab

One sided p-value 0.04 Chance to obtain this with 26 trials : 65%

None of the a priori source locations shows a significant excess

				90% C	.L.
				upper	limits
Object	(r.a. , dec) :	sigma	n _s est.	n _s	Φ
MGRO J2019+37	(304.8, 36.8) :	0.00	0.0	2.8	12.7
Cyg OB2/TeV J2033+4130	(308.3, 41.3) :	0.23	0.2	2.9	14.0
Mrk 421	(166.1, 38.2) :	0.00	0.0	2.9	13.1
Mrk 501	(253.5, 39.8) :	0.00	0.0	2.7	11.5
1ES 1959+650	(300.0, 65.2) :	0.00	0.0	3.3	14.6
IES 2344+514	(356.8, 51.7) :	0.00	0.0	2.8	11.4
H 1426+428	(21/.1, 42.7) :	0.00	0.0	3.0	14.5
BL Lac (QSO B2200+420)	(330.7, 42.3):	0.28	0.4	3.2	12.7
3C00A	(33.7, 43.0):	1 09	0.0	3.0	13.5
SC 454.5	(343.3, 10.1)	1.08	0.7	2.0	12.4
4C 38.41 DVC 0529+124	(240.0, 30.1):	0.00	0.0	2.0	10.2
PRS 0520+154	(02.7, 13.3).	0.00	0.0	2.0	11 0
SC 275	(107.3, 2.0).	0.00	0.0	2.5	11 /
NGC 1275 (Persons A)	(107.7, 12.4).	0.07	0.5	28	13 4
NGC 1273 (TEISEUS A)	(30.0, 41.3) .	0.00	0.0	3 0	14 5
SS 433	$(233.3, \pm 0.7)$	0.12	0.1	2 4	8 2
Cvg X-3	(308 1, 41 0)	0.51	0 4	3 0	14 5
Cvg X-1	(299.6. 35.2) :	0.52	0.4	3.0	12.2
LS I +61 303	(40.1, 61.2) :	0.00	0.0	3.2	14.2
GRS 1915+105	(288.8, 10.9) :	0.00	0.0	2.8	9.8
XTE J1118+480	(169.6, 48.0) :	0.00	0.0	2.8	12.4
GRO J0422+32	(65.4, 32.9) :	0.65	0.8	3.1	13.5
Geminga 98.48	(17.8, 0.6) :	0.65	0.8	3.0	16.4
Crab Nebula	(83.6, 22.0) :	1.77	1.6	5.2	21.8
Cas A	(350.9, 58.8) :	0.67	0.5	4.4	19.9

 Φ Flux Units: 10⁻¹¹ (*E* / TeV)⁻² TeV⁻¹ cm⁻² s⁻¹

Search for sources from known objects with AMANDA I

event selection optimized for both $dN/dE \sim E^{-2}$ and E^{-3} spectra

Out of 32 sources in candidate list

No significant excess, no indication for a neutrino source

Systematic error on signal prediction included in limits

	source	nr. of v events (5 years)	expected ^Ф سهackground (5 years)	E ⁻² flux upper limit (90% c.l.) [10 ⁻¹¹ TeV ⁻¹ cm ⁻² s ⁻¹]
	Markarian 421	6	7.4	7.4
Z	M87	6	6.1	8.7
AC	1ES 1959+650	5	4.8	13.5
ť	3C 273	8	4.72	18.0
uasai	SS433	4	6.1	4.8
croq	Cygnus X-3	7	6.5	11.8
Σi	Cygnus X-1	8	7.0	13.2
SNR	Crab Nebula	10	6.7	17.8

Detection of supernovae

We expect a burst of low energy (MeV) neutrinos from core collapse of supernovae

SN 1987 A

A burst of v has been observed by 3 observatories 3h before the observation in visible

CHANDRA X-RAY

HST OPTICAL

Detection of supernovae

We expect a burst of low energy (MeV) neutrinos from core collapse of supernovae

 $\overline{\mathbf{v}_e + p} \longrightarrow n + e^+$

Detection via increase in "dark noise" rate low noise PMTs (300Hz) enhance IceCube's sensitivity.

\boldsymbol{v} from GRBs

GRB timing/localization information from correlations among satellites

Correlations with AMANDA & IceCube data

big statistical advantage to look for a source!

> IPN Satellites (HETE, Swift, etc.)

\mathbf{v} from GRBs

GRB timing/localization information from correlations among satellites

Correlations with AMANDA & IceCube data

big statistical advantage to look for a source!

> IPN Satellites (HETE, Swift, etc.)

GLAST

Names	Spin	$P_{\mathcal{R}}$	Mass Eigenstates
Higgs bosons	0	+1	$h^0 H^0 A^0 H^{\pm}$
squarks	0	-1	$ \begin{aligned} \widetilde{u}_L & \widetilde{u}_R & \widetilde{d}_L & \widetilde{d}_R \\ \widetilde{s}_L & \widetilde{s}_R & \widetilde{c}_L & \widetilde{c}_R \\ \widetilde{t}_1 & \widetilde{t}_2 & \widetilde{b}_1 & \widetilde{b}_2 \end{aligned} $
sleptons	0 N	-1 LSP	$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$ $\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$ $\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$
neutralinos	1/2	-1	$\chi_1^0 \ \chi_2^0 \ \chi_3^0 \ \chi_4^0$
charginos	1/2	-1	X1 X2
gluino	1/2	-1	⁸ LSP
gravitino	3/2	-1	ũ

How they are produced? 1.UHE CR produce SUSY particles 2.SUSY particles cascade to NLSP 3.Meta-stable NLSP travels to IceCube

stau $(\tilde{\tau})$ will look **very** similar to a muon in IceCube

SUSY in Cosmic Rays

MSSM w/ conserved R parity Weakly interacting LSP Charged meta-stable NLSP

M.Ahlers, J.I. Illana, M. Masip, D. Meloni arXiv:0705.3782v1 [hep-ph]

SUSY searches in IceCube

Signature

• Two nearly parallel **µ-like** tracks near the horizon separated by more than 100m

• Above the horizon dominated by SM $\mu^+\mu^-$ background

Other stau sources via v-N

Cosmic HE (unknown diffuse flux) Atmospheric prompt charm decay

M.Ahlers, J.I. Illana, M. Masip, D. Meloni arXiv:0705.3782v1 [hep-ph]

I.F.M.Albuquerque, G. Burdman, Z. Chacko arXiv:0711.2908v1 [hep-ph]

6-0.1 yr⁻¹ @ WB limit 20-1 yr⁻¹ @ MPR limit

S.Ando, J.F. Beacom, S. Profumo, D. Rainwater arXiv:0711.2908v1 [hep-ph]

<1 yr⁻¹ & dominates over cosmic v

32

WIMPs searches

WIMPs are trapped in gravity wells : The center of Earth and Sun appear as sources of $\boldsymbol{\nu}$

WIMPs searches with AMANDA & IceCube

muon flux from Earth center

muon flux from the Sun

Work ongoing with AMANDA 2000-2006 We can use AMANDA/IceCube 22 combined data (veto from IceCube)

Future > Deep Core (first lines in 2009)

The DOMs : the eyes of IceCube

IC22 real waveforms ³⁶

- 2 ATWD @ 300 MHz on 400ns
 FADC @ 40MHz on 6.4µs
- Dynamic range 500pe/15ns 25000pe/6.4µs
 Send all data to surface : data + time stamp
- Dark noise rate ~ 400 Hz
- Local coincidence rate ~ 15 Hz
- Timing resolution \leq 2-3 ns
- Data rate IC-80 : I20 Gb/day (raw)
- Satellite bandwidth : 30 Gb/day

IC22 real waveforms ³⁶

PMT base

LED flashers

Main board

- 2 ATWD @ 300 MHz on 400ns
 FADC @ 40MHz on 6.4µs
- Dynamic range 500pe/15ns 25000pe/6.4µs
 Send all data to surface : data + time stamp
- Dark noise rate ~ 400 Hz
- Local coincidence rate ~ 15 Hz
- Timing resolution \leq 2-3 ns
- Data rate IC-80 : I20 Gb/day (raw)
- Satellite bandwidth : 30 Gb/day

IC22 real waveforms ³⁶

Timing verification with flashers

Confirmation of the precision of time synchronisation procedure