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S =
1√
2

(φs + iσs + vs)

The Next-to-Minimal Supersymmetric Standard Model
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Solution to the “μ-problem” of the MSSM by introducing an additional gauge singlet

µ ∼ QEWSB

WNMSSM ⊃ λĤuĤdŜ +
1
3
κŜ

3 µeff =
1√
2
λvs ∼ QEWSB

???

The singlet receives VEV after supersymmetry breaking and generates effective μ-term 

VNMSSM ⊃ m
2
sS

2 + TλHuHdS +
1
3
TκS

3

New soft-breaking terms to be included in the scalar potential

New phenonological aspects:  Five physical neutral Higgs-bosons and five neutralinos...

h1, h2, h3, a1, a2, χ̃0
1, χ̃
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WMSSM ⊃ µĤuĤd
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Higgs sector
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Higgs soft-breaking parameters fixed by minimum conditions of scalar potential (tadpole equations)
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Ti =
∂V

∂vi

���
φi=0

= 0 Ti + δTi = 0 (i = u, d, s)

Mass matrix obtained from scalar potential (tree-level) and self-energy (one-loop)

m2
h,1(p

2) = m2
h,0(p

2)−Πhh(p2)
�
m2

h,0

�
ij

=
∂2V

∂φi∂φj

���
φk=0,σk=0

All calculations performed in ‘t Hooft gauge using the diagrammatic approach 
using the Mathematica package SARAH  [Staub 2008-2010]

Similar expressions for pseudo-scalar and charged Higgs-bosons

One-loop masses from propagator poles and rotation matrix from diagonalization

Det
�
p2

i −m2
h,1(p

2)
�

= 0 Zhm2
hZ†

h = diag
�
m2

h1
, m2

h2
, m2

h3

�

Dominant two-loop contributions from (s)top and (s)bottom included [Degrassi & Slavich 2009]
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Neutralino sector
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Symmetric 5x5 mass matrix at tree-level in basis
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N ∗Mχ̃0N † = diag(mχ̃0
1
, . . . ,mχ̃0

1
)

Diagonalization trough 5x5 rotation matrix

One-loop mass matrix includes neutralino self-energy diagrams

�
B̃

0
, W̃

0
, H̃

0
d , H̃

0
u, S̃

�
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M(1)
χ̃0 = M(0)
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1
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(0)
χ̃0 +M(0)
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M2
LL = M2

L̃
+

1
2
v2

d(Y�)∗(Y�)T +
1
8
(g2

1 − g2
2)(v2

d − v2
u)13

M2
RR = M2

Ẽ
+

1
2
v2

d(Y�)∗(Y�)T +
1
4
g2
1(v2

d − v2
u)13

M2
LR = −1

2
vsvuλ∗(Y�)T +

1√
2
vd(T�)T

Slepton sector
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General 6x6 slepton mass matrices at the tree-level
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M2
(0) =

�
M2

LL M2
LR

M2
RL M2

RR

�

One-loop mass matrix obtained by including self-energies

M2
(1)(p

2
i ) = M2

(0) −Π�̃�̃(p
2
i )

Diagonalization leads to mass eigenvalues and rotation matrix

R�̃M
2
�̃
R†

�̃
= diag(m2

�̃1
, . . . ,m�̃6

)

/15



SARAH - A model builder’s tool
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All analytical expressions for the NMSSM were calculated using SARAH 
and exported to Fortran code to be included in SPheno...

Mathematica package to get all properties of a SUSY model from minimal amount of information

Input:  Gauge groups, particle content, superpotential

Input:  Symmetry breaking(s) and rotations

[F. Staub, arXiv:0806.0538;  F. Staub, arXiv:0909.2863, F. Staub, arXiv:1002.0840]

Final Lagrangian, mass matrices, tadpole eqs.

Vertices, loop corrections, renormalization group equations

Model files for FeynArts and CalcHEP,  LaTeX output

Lagrangian for gauge eigenstates

Large variety of supported models (with N=1 supersymmetry)

Full control over parameters (real or complex, allow/forbid off-diagonal entries, relations between parameters....)

Automatic check for gauge anomalies and charge conservation
Automatic calculation of soft-breaking terms and ghost interactions
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m0, M1/2, A0, λ, κ, Aλ, Aκ, vs, tanβ

The constrained NMSSM in SPheno
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Consider a nine-parameter “mSUGRA-inspired” realization with unification at GUT-scale

SUSY 2010 Bonn

Parameters at various scales connected through renormalization group equations (RGEs)

mZ GUTSUSY

Fix gauge and 
Yukawa couplings

Compute vu, vd 
from tanβ, mZ

Solve Tadpole 
equations for 
mHu, mHd, mS

Iterative solution until the physical masses converge with relative precision of 10-5

Apply boundary
conditions aboveRGE running

Compute SUSY
masses at one-loop

as discussed

RGE running
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Large correction for light
Higgs-boson, which is main
motivation for including 
the two-loop contribution

m0 = 180 GeV
M1/2 = 500 GeV
A0,λ = −1500 GeV
Aκ = −36 GeV

tanβ = 10
λ = 0.1
κ = 0.11

vs = 13689 GeV

An example spectrum
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Particle mT [GeV] m1L [GeV] ∆ [%] m2L [GeV] ∆ [%]

h1 86.7 113.3 23.5 119.6 5.2

h2 863.1 934.2 7.6 937.3 0.3

h3 2073.9 2073.9 < 0.1 2073.9 < 0.1

A
0
1 76.4 69.3 10.2 69.5 0.3

A
0
2 865.2 937.2 7.7 940.4 0.3

χ̃
0
1 211.6 207.6 1.9 - -

χ̃
0
2 388.2 398.4 2.6 - -

χ̃
0
3 987.9 980.5 0.7 - -

χ̃
0
4 993.0 985.1 0.8 - -

χ̃
0
5 2074.8 2074.9 < 0.1 - -

χ̃
+
1 388.2 398.6 2.6 - -

χ̃
+
2 993.3 985.9 0.7 - -

τ̃1 191.1 193.3 1.2 - -

τ̃2 388.1 393.1 1.1 - -

t̃1 506.9 541.8 6.4 - -

t̃2 914.4 949.3 3.7 - -

b̃1 845.3 880.4 3.9 - -

b̃2 961.9 1008.5 4.6 - -

g̃ 1107.2 1154.2 4.1 - -

Table 1: Comparison of the tree-level mT and loop masses at 1-loop (m1L) and 2-loop

(m2L). ∆ is the relative difference |1− mT
m1L

| respectively |1− m1L
m2L

|.
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Figure 1: Dependence of CP even Higgs masses on the renormalization scale Q at 1-loop

(red) and 2-loop level (dashed blue) normalized to the value at Q = 1 TeV. From left to

right: mh1 , mh2 and mh3 .

two-loop level. However, we remark that the values of λ and κ are small in this

scenario and we expect a stronger dependence in case of larger couplings.

The picture changes slightly in the case of the pseudo scalar bosons as can be

seen in fig. 2. While the heavier pseudo scalar behaves exactly as the second scalar

field since both originate to 99.5% from Hd, the scale dependence for the lighter

pseudo scalar is smaller compared to the lightest scalar field, but hardly improves

10

Input parameters:

[Djouadi et al. 2008]
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Higgs masses:  Theoretical error estimate
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Dependence on renormalization scale improves significantly at two-loop level for scalars
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No improvement for lightest pseudo-scalar due to only strong contributions in the two-loop part
  

Contributions from Yukawa couplings 
needed for further improvement...
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Comparison with NMSSM-Tools
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Only spectrum generator for NMSSM to date:  NMSSM-Tools 2.3.1 [Ellwanger & Hugonie 2006-2010]
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Modifications for numerical comparison:
• set scales QSTSB=QSUSY in NMSSM-Tools
• set external momenta to zero in SPheno
• switch off two-loop contributions in both codes
• keep in SPheno only same corrections to pseudoscalar masses as in NMSSM-Tools

SPheno NMSSM
•Masses are computed at SUSY scale
• Full momentum-dependence 

in Higgs-sector
• Full one-loop calculation for scalars and 

pseudoscalars plus two-loop 
contributions [Degrassi & Slavich 2009]

•Complete one-loop corrections to 
neutralino/chargino and slepton masses

NMSSM-Tools
•Different scale for mass computation
• Effective potential approach in Higgs 

sector (external momenta zero and momen-
tum-dependant contributions from top/bottom)

• For pseudo-scalars, only dominant one-
loop corrections from (s)tops/(s)bottoms
•Only corrections to M1, M2, and μeff 

for neutralinos/charginos
•No one-loop corrections for sleptons
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Higgs masses:  Comparison with existing results
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Largest discrepancies for lighter scalar (up to 2.5%) and pseudo-scalar (up to 35%) Higgs bosons

SUSY 2010 Bonn

Perfect agreement with one-loop results from independent routines [Degrassi & Slavich, 2009]
(small difference of one per-mille due to Yukawa and trilinear couplings of 1st and 2nd generation)
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NMSSM-Tools

For lightest scalar:  p2-terms in loop functions and additional two-loop contributions
For pseudo-scalar:  only contributions from 3rd sfermions in NMSSM-Tools while full one-loop 
result plus two-loop contributions in SPheno

Modified programs differ by at most 2% due to different solutions of the tadpole equations
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Reduced dependence on renormalization scale at the one-loop level,
good agreement with NMSSM-Tools for neutralino masses (at most 1%, generally slighly below 0.5%)

Neutralino masses
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Slepton masses
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Lighter stau shows largest dependence on renormalization scale (about 1% at one-loop)
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0 200 400 600 800 1000

200

400

600

800

1000

m0[GeV]

m
τ̃
i

500 1000 1500 2000

0.985

0.990

0.995

1.000

1.005

Q[GeV]

m
τ̃
1

tree-level

one-loop

SPheno
NMSSM-Tools

Differences in slepton masses more 
pronounced between the two codes 
due to the one-loop contributions 

included in SPheno

Similar uncertainties for LHC physics,
but such precision necessary for linear 
collider and dark matter calculation...
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Neutralino relic density can be very sensitive to mass configuration,
in particular for Higgs-funnels or co-annihilation regions (shown below)

Impact on dark matter relic density
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Corrections to the stau mass shift preferred region in parameter space
Neutralino mass less important in this context

0.1018 < ΩCDMh2 < 0.1228
slepton masses one-loop

slepton masses 
tree-level

Relic density computed using micrOMEGAs with CalcHEP model files generated by SARAH
and taking into account important QCD effects (as also in NMSSM-Tools)
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The NMSSM is an attractive extension of the MSSM since it solves the “μ-problem”
This leads to interesting new phenomenological at present and future collider experiments
and can explain the amount of dark matter in our universe

Summary
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The special SPheno version can be obtained upon request and will become public in near future...
Further realizations of the NMSSM (other than 9-parameter cNMSSM) can easily be implemented...

However, more accurate theoretical prediction are needed, e.g. for constraints from WMAP data

Complete one-loop calculation of the electroweak sector (Higgs bosons, neutralinos/charginos, sleptons) 
obtained with the help of the Mathematica package SARAH [Staub 2008-2010]

and implemented in spectrum calculator SPheno [Porod 2003-2010]

Numerical implementation of constrained NMSSM reproduces known results for the Higgs-sector
Corrections for other particles amount to a few percent 
(below precision of LHC data, but clearly important in the context of WMAP data and a future linear collider)

                                                                                                          [Staub, Porod, Herrmann 2010]
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Implementation and verification of Wilson coefficients for precision observables 
(b→sγ, b→sμμ, ΔmBs,...) and particle decays in progress...


