Measuring Hidden Higgs and Strongly-Interacting Higgs Scenarios

S. BOCK, R. LAFAYE, T. PLEHN, M. RAUCH, D. ZERWAS AND P.M. ZERWAS

Higgs Beyond the Standard Model

New Physics: will very likely modify Higgs couplings

- ⇒Higgs couplings @LHC
 - = Test the SM and probe for New Physics

We studied 2 scenarios

- Hidden sector coupling to SM only through Higgs
- Composite Higgs generated by new strong interactions

In those scenarios Higgs couplings wrt SM are reduced either universally or per particle type

The Hidden Sector (HS)

Scalar Higgs links SM (s) and Hidden (h) sectors:

$$\mathcal{V} = \mu_s^2 |\phi_s|^2 + \lambda_s |\phi_s|^4 + \mu_h^2 |\phi_h|^2 + \lambda_h |\phi_h|^4 + \eta_\chi |\phi_s|^2 |\phi_h|^2$$

After diagonalizing the Higgs mass matrix:

$$H_1 = \cos \chi H_s + \sin \chi H_h$$
$$H_2 = -\sin \chi H_s + \cos \chi H_h$$

If the mixing η_{χ} is moderate $H_1 \sim$ SM Higgs With couplings universally suppressed:

$$\Gamma_{\rm vis} = \cos^2 \chi \, \Gamma_{\rm vis}^{\rm SM}$$

The Hidden Sector (HS)

Couplings universally suppressed by:

 $\Gamma_{\rm vis} = \cos^2 \chi \, \Gamma_{\rm vis}^{\rm SM}$

 H_1 may also decay invisibly:

$$\Gamma_{\rm inv} = \cos^2 \chi \, \Gamma_{\rm inv}^{\rm SM} + \Gamma_{\rm hid}$$

 Γ_{inv}^{SM} is extrapolated from $H \rightarrow ZZ \rightarrow 4l$ (into $\rightarrow 4v$)

Higgs observables are compared to SM expectations

using SFITTER

$$\sigma \cdot BR \propto \frac{\Gamma_p \Gamma_d}{\Gamma_{\text{tot}}} = \kappa \left(\frac{\Gamma_p \Gamma_d}{\Gamma_{\text{tot}}}\right)^{\text{SM}}$$

p: production mode

d: decay mode

SM Higgs @ LHC, 30 fb⁻¹

Signatures included in this analysis (m_H =120 GeV):

production	decay	S+B	В	S	$\Delta S^{(\exp)}$	$\Delta S^{(\mathrm{theo})}$
$gg \rightarrow H$	ZZ	13.4	$6.6 \ (\times \ 5)$	6.8	3.9	0.8
qqH	ZZ	1.0	$0.2 \ (\times \ 5)$	0.8	1.0	0.1
$gg \to H$	WW	1019.5	$882.8 (\times 1)$	136.7	63.4	18.2
qqH	WW	59.4	$37.5 \ (\times \ 1)$	21.9	10.2	1.7
$t\bar{t}H$	$WW(3\ell)$	23.9	$21.2 (\times 1)$	2.7	6.8	0.4
$t\bar{t}H$	$WW(2\ell)$	24.0	$19.6 (\times 1)$	4.4	6.7	0.6
inclusive	$\gamma\gamma$	12205.0	$11820.0 \ (\times \ 10)$	385.0	164.9	44.5
qqH	$\gamma\gamma$	38.7	$26.7 (\times 10)$	12.0	6.5	0.9
$t\bar{t}H$	$\gamma\gamma$	2.1	$0.4 (\times 10)$	1.7	1.5	0.2
WH	$\gamma\gamma$	2.4	$0.4 (\times 10)$	2.0	1.6	0.1
ZH	$\gamma\gamma$	1.1	$0.7 \ (imes \ 10)$	0.4	1.1	0.1
qqH	$\tau \tau(2\ell)$	26.3	$10.2 \ (\times \ 2)$	16.1	5.8	1.2
qqH	$\tau \tau(1\ell)$	29.6	$11.6 \ (\times \ 2)$	18.0	6.6	1.3
$t\bar{t}H$	$b\overline{b}$	244.5	$219.0 \ (\times \ 1)$	25.5	31.2	3.6
WH/ZH	$b\overline{b}$	228.6	$180.0 \ (\times \ 1)$	48.6	20.7	4.0

Statistic used to extrapolate background

SM Higgs excluded if m_H between 120 and 200 GeV

Higgs decaying to Hidden Sector

Note: Even if we do not measure directly $H \rightarrow invisible$ We can translate the measure of $\cos^2 \chi$ into an upper limit: $BR_{inv} \leq 1 - \cos^2 \chi$

Natural mixing suppression

Hidden sector structure similar to SM

With 30 fb⁻¹ \Rightarrow No 5 σ evidence

We choose benchmark $\Gamma_{hid} = \sin^2 \chi \Gamma_{tot}^{SM}$

for m_H =120 GeV and $cos^2\chi = 0.4$

production	decay	S+B	В	S	$\Delta S^{(\mathrm{exp})}$	$\Delta S^{(\mathrm{theo})}$
qqH	invisible	2165.0	1847.1 (× 1)	317.9	197.8	22.25

Higgs decaying to Hidden Sector

For m_H=120 GeV, 30 fb⁻¹, $\Gamma_{hid} = sin^2 \chi \Gamma^{SM}$ Γ_{hid} measurement is always compatible with 0

Parameters Γ_{hid} and $\cos^2 \chi$ are clearly correlated Impact on $\cos^2 \chi$ determination: 0 to 0.2 wider, assymetric

Light Higgs generated as pseudo-Goldstones global symmetry breaking in new strong interaction sector Magnitude of the Goldstone scale: $\xi = \left(\frac{v}{f}\right)^2$

If couplings suppressed universally:

$$\Gamma_{\rm vis} = (1 - \xi) \Gamma_{\rm vis}^{\rm SM}$$

Case similar to previous one with:

$$\cos^2 \chi \to 1 - \xi$$
 $\Gamma_{\text{hid}} =$

Couplings suppressed per particle type:

$$\Gamma_{\rm vis} = (1-\xi)\Gamma_{\rm vis}^{\rm SM} \qquad \Gamma_{\rm vis} = (1-2\xi)^2 / (1-\xi)\Gamma_{\rm vis}^{\rm SM}$$

vectors

fermions

Now, we have 4 type of observables, depending on

• production mode (*V* or *f*)

o decay mode (V or f)

Note: the fermionic factor can be > 1 for $\xi \rightarrow 1$

At 30 fb⁻¹ two solutions are present At 300 fb⁻¹ they can be disentangled for low Higgs masses At high Higgs masses, most measurements are fermionic production, which can not differentiate between high and low ξ

Fitting vector and fermion couplings separately

For SM scenario g_{VVH} (g_{ffH}) precision is 0.22 (0.55) @ 95% CL When ξ is too high the correlation is not following the models If two solutions: we determine errors and relative probabilities

Green line = strongly interactive Higgs boson models with ξ in steps of 0.1

Conclusion

• With 30fb⁻¹ @LHC

• Individual measurements of couplings $\Delta g/g @ 20-40\%$

This analysis

- 1 or 2 parameter fit of universal deviation \Rightarrow 10-20%
- \circ 5 σ deviations from SM are within reach
- \circ Can also be interpreted as upper limit on H \rightarrow invisible

SM Higgs @ LHC

Systematic uncertainties

luminosity measurement	5~%
detector efficiency	2 %
lepton reconstruction efficiency	2~%
photon reconstruction efficiency	2 %
WBF tag-jets / jet-veto efficiency	5 %
b-tagging efficiency	3%
$\tau\text{-}\mathrm{tagging}$ efficiency (hadronic decay)	3%
lepton isolation efficiency $(H\to 4\ell)$	3~%

	$\Delta B^{\rm (syst)}$	corr.
$H \rightarrow ZZ$	1%	yes
$H \to WW$	5%	no
$H \rightarrow \gamma \gamma$	0.1%	yes
$H \to \tau \tau$	5%	yes
$H \rightarrow b \bar{b}$	10%	no

Background estimation systematic uncertainties