Higgs Physics in Warped Extra Dimensions #### Florian Goertz GDR Terascale Brussels Nov 3, 2010 Casagrande, FG, Haisch, Neubert, Pfoh, JHEP 1009(2010)014 #### Outline Warped Extra Dimensions 2 Higgs Physics in Warped Extra Dimensions #### Outline Warped Extra Dimensions 2 Higgs Physics in Warped Extra Dimensions ## Motivation: The Gauge Hierarchy Problem # Motivation: The Gauge Hierarchy Problem • Higgs mass receives quadratically divergent corrections - \Rightarrow expect $m_h^2 \sim \max[\Lambda_{ND}^i]^2$ - Gauge bosons: gauge symmetry } small masses natural - Fermions: $SU(2)_L$ #### Motivation cont.: The Flavor Puzzle #### Motivation cont.: The Flavor Puzzle # The Randall-Sundrum (RS) Model - Solution to the gauge hierarchy problem in 5D spacetime - Hierarchy between the electroweak- and Planck scale generated through non-factorizable metric $$ds^2=e^{-2L|\phi|/\pi}\eta_{\mu u}dx^\mu dx^ u-r^2d\phi^2$$ • All fundamental mass parameters of $\mathcal{O}(M_{PL})$ Just the Higgs boson has to be localized at (close to) the TeV brane in order to solve the hierarchy problem ⇒ Bulk-SM $$m_1 \approx 2.5 \, M_{ m KK},$$ $M_{ m KK} = k e^{-L} \sim {\sf TeV}$ Davoudiasl, Hewett, Rizzo, hep-ph/9911262 $$A_{\mu}(x,\phi) = \frac{1}{\sqrt{r}} \sum_{n} A_{\mu}^{(n)}(x) \, \chi_{n}^{A}(\phi)$$ $$-\frac{1}{r^{2}} \, \partial_{\phi} \, e^{-2\sigma(\phi)} \, \partial_{\phi} \, \chi_{n}^{A}(\phi) = (m_{n}^{A})^{2} \, \chi_{n}^{A}(\phi)$$ Just the Higgs boson has to be localized at (close to) the TeV brane in order to solve the hierarchy problem ⇒ Bulk-SM $$m_1 pprox 2.5 \, M_{ m KK},$$ $M_{ m KK} = k e^{-L} \sim {\sf TeV}$ Davoudiasl, Hewett, Rizzo, hep-ph/9911262 $$Z_{\mu}(x,\phi) = \frac{1}{\sqrt{r}} \sum_{n} Z_{\mu}^{(n)}(x) \, \chi_{n}^{Z}(\phi) \qquad \text{KK decomposition in mass basis, treat EWSB exactly}$$ $$-\frac{1}{r^{2}} \, \partial_{\phi} \, \mathrm{e}^{-2\sigma(\phi)} \, \partial_{\phi} \, \chi_{n}^{Z}(\phi) = (m_{n}^{Z})^{2} \, \chi_{n}^{Z}(\phi) - \frac{\delta(|\phi| - \pi)}{r} \, M_{Z}^{2} \, \chi_{n}^{Z}(\phi)$$ Just the Higgs boson has to be localized at (close to) the TeV brane in order to solve the hierarchy problem ⇒ Bulk-SM $$m_1 pprox 2.5 \, M_{ m KK},$$ $M_{ m KK} = k e^{-L} \sim {\sf TeV}$ Grossman, Neubert, hep-ph/9912408 Gherghetta, Pomarol, hep-ph/0003129 $$\begin{split} u_L(x,\phi) &= \frac{e^{2\sigma(\phi)}}{\sqrt{r}} \sum_n \mathbf{C}_n^{(Q)}(\phi) \, a_n^{(U)} \, u_L^{(n)}(x) \,, \quad u_L^c(x,\phi) = \frac{e^{2\sigma(\phi)}}{\sqrt{r}} \sum_n \mathbf{S}_n^{(u)}(\phi) \, b_n^{(u)} \, u_L^{(n)}(x) \\ \left(\frac{1}{r} \partial_\phi + \mathbf{M}_Q \operatorname{sgn}(\phi) \right) \, \mathbf{S}_n^{(Q)}(\phi) a_n^{(U)} &= m_n e^{\sigma(\phi)} \mathbf{C}_n^{(Q)}(\phi) a_n^{(U)} - \delta(|\phi| - \pi) e^{\sigma(\phi)} \frac{\sqrt{2} \, v}{kr} \mathbf{Y}_u \mathbf{C}_n^{(u)}(\phi) a_n^{(u)} \end{split}$$. Just the Higgs boson has to be localized at (close to) the TeV brane in order to solve the hierarchy problem ⇒ Bulk-SM $$m_1 pprox 2.5 \, M_{ m KK},$$ $M_{ m KK} = k e^{-L} \sim { m TeV}$ #### Couplings \sim flavor dependent overlaps, doublet-singlet mixing \Rightarrow Fields with same QN under unbroken symmetry have different couplings to gauge bosons of broken symmetry \Rightarrow tree FCNCs RS offers explanation for fermion mass hierarchies and small CKM mixing angles Huber, hep-ph/0303183; Agashe, Perez, Soni, hep-ph/0408134 $$c_{Q,q} = \pm M_{Q,q}/k : \mathcal{O}(1)$$ dimensionless 5D-mass parameters RS offers explanation for fermion mass hierarchies and small CKM mixing angles Huber, hep-ph/0303183; Agashe, Perez, Soni, hep-ph/0408134 - RS offers explanation for fermion mass hierarchies and small CKM mixing angles - Zero Mode Approximation: • One-to-one correspondence to Froggatt-Nielsen mechanism: charge under $U(1)_F \Leftrightarrow$ localization $c_{Q,q} = \pm M_{Q,q}/k \sim \mathcal{O}(1)$ ``` Froggatt, Nielsen, Nucl. Phys. B 147, 277 (1979) Casagrande, FG, Haisch, Neubert, Pfoh, 0807.4937 Blanke, Buras, Duling, Gori, Weiler, 0809.1073 ``` $$m_{q_i} = \mathcal{O}(1) imes rac{arphi}{\sqrt{2}} \left| F(c_{Q_i}) F(c_{q_i}) ight| \qquad \qquad lacksquare$$ $$ar{ ho}, ar{\eta} \sim \mathcal{O}(1)$$ $$m_{q_i} = \mathcal{O}(1) imes rac{v}{\sqrt{2}} |F(c_{Q_i})F(c_{q_i})|$$ $$\bar{ ho}, \bar{\eta} \sim \mathcal{O}(1)$$ \checkmark $$m_{q_i} = \mathcal{O}(1) imes rac{ ilde{v}}{\sqrt{2}} \left| F(c_{Q_i}) F(c_{q_i}) ight| \qquad \qquad lacksquare$$ $$egin{align} ar{ ho}, ar{\eta} &\sim \mathcal{O}(1) \; \checkmark \ & rac{|F(c_{Q_1})|}{|F(c_{Q_2})|} \sim \lambda \; , \qquad rac{|F(c_{Q_2})|}{|F(c_{Q_3})|} \sim \lambda^2 \; , \qquad rac{|F(c_{Q_1})|}{|F(c_{Q_3})|} \sim \lambda^3 \ & \Rightarrow \mathbf{V}_{\mathit{CKM}} \sim \left(egin{align*} egin{align*} & \lambda & \lambda^3 \\ & & \lambda^3 & \lambda^3 \\ & & & \lambda^3 \end{array} ight) \end{array}$$ $$m_{q_i} = \mathcal{O}(1) imes rac{v}{\sqrt{2}} \left| F(c_{Q_i}) F(c_{q_i}) ight| \qquad \qquad lacksquare$$ $$egin{align} ar{ ho}, ar{\eta} &\sim \mathcal{O}(1) \; \checkmark \ & rac{|F(c_{Q_1})|}{|F(c_{Q_2})|} \sim \lambda \; , \qquad rac{|F(c_{Q_2})|}{|F(c_{Q_3})|} \sim \lambda^2 \; , \qquad rac{|F(c_{Q_1})|}{|F(c_{Q_3})|} \sim \lambda^3 \ & \Rightarrow \mathbf{V}_{\mathit{CKM}} \sim \left(egin{align*} egin{align*} & \lambda & \lambda^3 \\ & & \lambda^3 & \lambda^3 \\ & & & \lambda^3 \end{array} ight) \checkmark \ & \lambda^3 & \lambda^3 & \lambda^3 \end{array}$$ Expect sizable effects in 3rd generation and Higgs physics #### Outline Warped Extra Dimensions 2 Higgs Physics in Warped Extra Dimensions ### Higgs Production and Decay #### First complete one-loop calculation in RS Casagrande, FG, Haisch, Neubert, Pfoh, 1005.4315 (custodial model) Bouchart, Moreau, 0909.4812; Azatov, Toharia, Zhu, 1006.5939 $$\kappa_{g} = \frac{\sum_{i=t,b} \kappa_{i} A_{q}^{h}(\tau_{i}) + \sum_{j=u,d,\lambda} \nu_{j}}{\sum_{i=t,b} A_{q}^{h}(\tau_{i})}$$ - $\tau_i \equiv 4 m_i^2 / m_h^2$ - Form factor $A_q^h(\tau_i)$ approaches 1 for $\tau_i \to \infty$ and vanishes proportional to τ_i for $\tau_i \to 0$ - $\kappa_t = 1 \frac{v}{m_t} (\Delta g_h^u)_{33}$, $\kappa_b = 1 \frac{v}{m_b} (\Delta g_h^d)_{33}$ - ν_j : KK fermions in loop $$\kappa_{g} = \frac{\sum_{i=t,b} \kappa_{i} A_{q}^{h}(\tau_{i}) + \sum_{j=u,d,\lambda} \nu_{j}}{\sum_{i=t,b} A_{q}^{h}(\tau_{i})}$$ - $\tau_i \equiv 4 m_i^2 / m_h^2$ - Form factor $A_q^h(\tau_i)$ approaches 1 for $\tau_i \to \infty$ and vanishes proportional to τ_i for $\tau_i \to 0$ - $\kappa_t = 1 \frac{v}{m_t} (\Delta g_h^u)_{33}$, $\kappa_b = 1 \frac{v}{m_b} (\Delta g_h^d)_{33}$ - ν_j : KK fermions in loop $$\sigma(gg \to h)_{\rm RS} = |\kappa_g|^2 \sigma(gg \to h)_{\rm SM}$$ $$\kappa_g = \frac{\sum_{i=t,b} \frac{\kappa_i}{\kappa_i} A_q^h(\tau_i) + \sum_{j=u,d,\lambda} \nu_j}{\sum_{i=t,b} A_q^h(\tau_i)}$$ - $\tau_i \equiv 4 m_i^2 / m_h^2$ - Form factor $A_q^h(\tau_i)$ approaches 1 for $\tau_i \to \infty$ and vanishes proportional to τ_i for $\tau_i \to 0$ - $\kappa_t = 1 \frac{v}{m_t} (\Delta g_h^u)_{33}$, $\kappa_b = 1 \frac{v}{m_b} (\Delta g_h^d)_{33}$ - ν_j : KK fermions in loop $$\kappa_{g} = \frac{\sum_{i=t,b} \kappa_{i} A_{q}^{h}(\tau_{i}) + \sum_{j=u,d,\lambda} \frac{\nu_{j}}{\sum_{i=t,b} A_{q}^{h}(\tau_{i})}$$ - $\tau_i \equiv 4 m_i^2 / m_h^2$ - Form factor $A_q^h(\tau_i)$ approaches 1 for $\tau_i \to \infty$ and vanishes proportional to τ_i for $\tau_i \to 0$ - $\kappa_t = 1 \frac{v}{m_t} (\Delta g_h^u)_{33}$, $\kappa_b = 1 \frac{v}{m_b} (\Delta g_h^d)_{33}$ - ν_i : KK fermions in loop Misalignment between the SM fermion masses and Yukawa couplings $$(\Delta g_h^q)_{ii} = |\cdots|^2 + \mathcal{O}(\frac{m_c}{m_t}) > 0$$ \Rightarrow Zero-mode Higgs couplings suppressed with respect to SM (minimal + custodial model) Misalignment between the SM fermion masses and Yukawa couplings $$(\Delta g_h^q)_{ii} = |\cdots|^2 + \mathcal{O}(\frac{m_c}{m_t}) > 0$$ ⇒ Zero-mode Higgs couplings suppressed with respect to SM (minimal + custodial model) $$u_u = rac{2}{r} \sum_{n=4}^{\infty} \; ec{m{z}_n^{U\dagger} \, m{\mathsf{C}}_n^U(\pi^-) \left(m{1} - rac{v^2}{3 \, M_{ m KK}^2} \, m{ ilde{Y}}_{ec{u}} m{ar{Y}}_{ec{u}}^\dagger ight) m{\mathsf{S}}_n^U(\pi^-) \, ec{m{z}}_n^U}{m{m}_n^u} \, A_q^h(au_n^u)$$ $$\nu_u \approx \frac{2}{r} \sum_{n=4}^{\infty} \frac{\vec{\boldsymbol{a}}_n^{U\dagger} \, \boldsymbol{\mathsf{C}}_n^{U}(\boldsymbol{\pi}^-) \left(\boldsymbol{1} - \frac{v^2}{3 \, M_{\mathrm{KK}}^2} \, \boldsymbol{\tilde{\boldsymbol{Y}}}_{\vec{u}} \boldsymbol{\tilde{\boldsymbol{\mathsf{Y}}}}_{\vec{u}}^{\dagger} \right) \boldsymbol{\mathsf{S}}_n^{U}(\boldsymbol{\pi}^-) \, \vec{\boldsymbol{a}}_n^{U}}{m_n^{U}}$$ $$\nu_{u} \approx \frac{2}{r} \sum_{n=4}^{\infty} \frac{\vec{a}_{n}^{U\dagger} \mathbf{C}_{n}^{U}(\pi^{-}) \left(\mathbf{1} - \frac{v^{2}}{3 M_{\mathrm{KK}}^{2}} \mathbf{\tilde{Y}}_{\vec{u}} \mathbf{\tilde{Y}}_{\vec{u}}^{\dagger}\right) \mathbf{S}_{n}^{U}(\pi^{-}) \vec{a}_{n}^{U}}{m_{n}^{u}}$$ - Sum is naively divergent (without cancellations) - But: Low energy theorems relate Wilson coefficient of operator $h/v G_{\mu\nu}^a G^{a\mu\nu}$ to QCD β -function Low, Rattazzi, Vichi, 0907.5413 + refs therein, Logarithmic running of α_s in RS Randall, Schwartz, hep-th/0108114,... \Rightarrow convergence of sum above $$\nu_{u} \approx \frac{2}{r} \sum_{n=4}^{\infty} \frac{\vec{a}_{n}^{U\dagger} \mathbf{C}_{n}^{U}(\pi^{-}) \left(\mathbf{1} - \frac{v^{2}}{3 M_{\mathrm{KK}}^{2}} \mathbf{\tilde{Y}}_{\vec{u}} \mathbf{\tilde{Y}}_{\vec{u}}^{\dagger}\right) \mathbf{S}_{n}^{U}(\pi^{-}) \vec{a}_{n}^{U}}{m_{n}^{u}}$$ - Sum is naively divergent (without cancellations) - But: Low energy theorems relate Wilson coefficient of operator $h/v~G^a_{\mu\nu}~G^{a\,\mu\nu}$ to QCD β -function Low, Rattazzi, Vichi, 0907.5413 + refs therein, Logarithmic running of α_s in RS Randall, Schwartz, hep-th/0108114,... \Rightarrow convergence of sum above In practice: $$\nu_{u} \approx \frac{2}{r} \sum_{n=4}^{\infty} \frac{\vec{a}_{n}^{U\dagger} \mathbf{C}_{n}^{U}(\pi^{-}) \left(\mathbf{1} - \frac{v^{2}}{3 M_{\mathrm{KK}}^{2}} \mathbf{\tilde{Y}}_{\vec{u}} \mathbf{\tilde{Y}}_{\vec{u}}^{\dagger}\right) \mathbf{S}_{n}^{U}(\pi^{-}) \vec{a}_{n}^{U}}{m_{n}^{u}}$$ - Sum is naively divergent (without cancellations) - But: Low energy theorems relate Wilson coefficient of operator $h/v G_{\mu\nu}^a G^{a\mu\nu}$ to QCD β -function Low, Rattazzi, Vichi, 0907.5413 + refs therein, Logarithmic running of α_s in RS Randall, Schwartz, hep-th/0108114,... \Rightarrow convergence of sum above In practice: solid: custodial RS, dashed: SM solid: custodial RS, dashed: SM - Higgs mass bounds could be altered - ullet Only mild dependence on RS parameters besides $M_{ m KK}$ - At $M_{\rm KK}=5$ TeV still suppressions up to 40 % \rightarrow sensitivity to high scales! - WWh and ZZh receive mild suppressions of order -10% (-5%) in custodial (minimal) model for $M_{\rm KK}=2$ TeV - Sum up fermions and W-bosons in loop - Above WW threshold: Higgs discovery via golden channel $gg \to h \to Z^{(*)}Z^{(*)} \to l^+l^-l^+l^-$ more difficult - Below WW threshold: slightly better potential to discover the Higgs via $gg \to h \to \gamma \gamma$ for $M_{\rm KK}=2$ TeV #### Summary - RS models offer interesting possibility to address unexplained hierarchies - Couplings involving third generation quarks or the Higgs boson can receive significant corrections - Sensitivity to KK masses well above 10 TeV in Higgs Physics ## Summary - RS models offer interesting possibility to address unexplained hierarchies - Couplings involving third generation quarks or the Higgs boson can receive significant corrections - Sensitivity to KK masses well above 10 TeV in Higgs Physics Thank you for your attention! # Backup: Higgs Couplings $$\mathcal{L}_{ ext{4D}} ightarrow - \sum_{q,m,n} ig(g_h^qig)_{mn} \, h \, ar{q}_L^{\,m} \, q_R^{\,n} + ext{h.c.} \,, \ ig(g_h^qig)_{mn} \equiv \delta_{mn} \, rac{m_m^q}{v} - ig(\Delta g_h^qig)_{mn} \,, \ ig(\Delta g_h^qig)_{mn} = rac{m_m^q}{v} ig(\Phi_qig)_{mn} + ig(\Phi_Qig)_{mn} \, rac{m_n^q}{v} + ig(\Delta ilde{g}_h^qig)_{mn} \,, \ ig(\Phi_qig)_{mn} = rac{2\pi}{L\epsilon} \int_\epsilon^1 \! dt \, ar{s}_m^{Q\dagger} \, \mathbf{S}_m^Q(t) \, \mathbf{S}_n^Q(t) \, ar{s}_n^Q \,, \ ig(\Phi_Qig)_{mn} = rac{2\pi}{L\epsilon} \int_\epsilon^1 \! dt \, ar{s}_m^{q\dagger} \, \mathbf{S}_m^q(t) \, \mathbf{S}_n^q(t) \, ar{s}_n^q \,, \ ig(\Delta ilde{g}_h^qig)_{mn} = rac{1}{\sqrt{2}} rac{2\pi}{L\epsilon} rac{v^2}{3M^2} \, ar{s}_m^{Q\dagger} \, \mathbf{C}_m^Q(1^-) \, ar{\mathbf{Y}}_{ec{q}}^{\,\dagger} ar{\mathbf{Y}}_{ec{q}$$