▲□▶▲□▶▲□▶▲□▶ □ のQ@

Higgs decaying to lepton jets at the Tevatron and LHC

Adam Falkowski

LPT Orsay

GDR Brussels, 03 November 2010

Based on AA,Ruderman,Volansky,Zupan [1002.2952] and AA,Ruderman,Volansky,Zupan [1007.3496]

Outline

- Higgs decaying to Lepton Jets
- Tevatron Searches of Lepton Jets
- Searching for Lepton Jets using EMF

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Who are lepton jets?

- LJ is a cluster of highly collimated charged particles: electrons, and possibly muons and pions
- LJs arise in models with a light hidden sector composed of unstable particles with masses in the MeV to GeV range
- One important class of such models contains a vector particle (dark photon) with a GeV scale mass and with a small kinetic mixing with the SM photon
- At high energy colliders (LEP, Tevatron and LHC) dark photons and other light hidden particles are produced with large boosts, causing their visible decay products to form jet-like structures.

End

 ${
m H}
ightarrow {
m LJ}$

LJ

LJ searches

PAMELA saw hints of hidden sector?

The concept of lepton jets was motivated by models aiming to explain cosmic ray anomalies

- PAMELA sees an excess in positrons but not in antiprotons
- Also, no clear signs of dark matter in gamma rays
- If dark matter annihilation or decay is the source, one needs to find mechanism why it populates cosmic electrons only

 ${
m H}
ightarrow {
m LJ}$

LJ searches

LJ using EMF

End

Dark matter via the hypercharge portal

 One way to explain PAMELA is to introduce "dark photon" z_μ that mixes kinetically with the SM hypercharge, Arkani-Hamed, Finkbeiner, Slatyer, Weiner [0810.0713]

 $\mathcal{L} \sim -z_{\mu\nu}^2 + m_z^2 z_\mu^2 + \epsilon z_{\mu\nu} B_{\mu\nu} \qquad \epsilon \leq 10^{-3}$

Afer field redefinition, $A_{\mu} \rightarrow A_{\mu} + \epsilon z_{\mu}$, dark photon mili-couples to the electromagnetic current, $\epsilon z_{\mu} Q_i \overline{\psi}_i \gamma^{\mu} \psi_i$

- Dark matter could annihilate into dark photons
- Dark photon then decay into a pair of charged kinematically available SM states: electrons, muons, pions,...

LJ

(ロ) (同) (三) (三) (三) (○) (○)

Supersymmetric dark photon

- Supersymmetry is a natural extension that stabilizes the GeV scale
- Minimal framework based on hidden U(1), with dark photon z + dark bino \tilde{b} + 2 dark higgs multiplets $h_{u,d}$ Cheung,Ruderman,Wang,Yavin [0902.3246]
- After electrodark symmetry breaking,
 - One massive dark photon z_{μ} ,
 - Three dark neutralinos $\tilde{n}_d,$ who are mixtures of the hidden bino and higgsinos,
 - Three dark scalars h_d , two CP-even h_d , H_d and one CP-odd A_d .
- Playing with soft and mu terms in the hidden sector, various mass patterns leading to various cascade decay chains can be obtained

 ${\rm H} \rightarrow {\rm LJ}$

LJ searches

How to produce hidden sector particles in colliders

Portal from the MSSM to the hidden sector via bino

 $-i\epsilon \tilde{b}^{\dagger} \bar{\sigma}_{\mu} \partial_{\mu} \tilde{B} - i\epsilon \tilde{B}^{\dagger} \bar{\sigma}_{\mu} \partial_{\mu} \tilde{b}$

• Induces dark bino shift $\tilde{b} \to \tilde{b} + \epsilon \tilde{B}$, that leads visible bino mili-coupling to hidden sector

 $\epsilon\sqrt{2}g_{d}\tilde{B}\left(h_{u}^{\dagger}\tilde{h}_{u}-h_{d}^{\dagger}\tilde{h}_{d}
ight)$

- Effects of bino mass mixing resulting from the shift are down by another m_z/m_z and can be neglected
- The lightest SM superpartner is no longer stable but decays into hidden sector!

Every susy particle produced could lead to one more lepton jets

carries off missing energy

・ロト・日本・日本・日本・日本・日本

AA,Ruderman,Volansky,Zupan [1002.2952] proposal: Higgs decays into lepton jets and missing energy, in the MSSM + light hidden sector

 ${\rm H} \rightarrow {\rm LJ}$

LJ searches

Higgs decays to Neutralino

 In the MSSM the lightest Higgs boson can decay into neutralinos when m_N < m_h/2

$$g_{h11}h\tilde{N}_{1}\tilde{N}_{1} + \text{h.c.} \qquad g_{h11} = \frac{1}{2} \left(gc_{W} - g'c_{B}\right) \left(s_{\gamma}c_{U} - c_{\gamma}c_{D}\right)$$
$$H_{u}^{0} = \left(s_{\beta}v + s_{\gamma}h + \dots\right)/\sqrt{2}, H_{d}^{0} = \left(c_{\beta}v + c_{\gamma}h + \dots\right)/\sqrt{2}$$
$$\Gamma(h \to \tilde{N}_{1}\tilde{N}_{1}) \approx \frac{g_{h11}^{2}m_{h}}{4\pi}$$

- A large branching fraction only when neutralino is *mixture* of bino/wino and higgsino
- A light neutralino has to be mostly bino to evade detection at LEP
- Branching fraction into neutralinos is above 75% when $c_{U,D} \gtrsim 1/5$
- That implies $BR(Z \to \tilde{N}_1 \tilde{N}_1) \sim 10^{-3} 10^{-4}$, so that $m_{N1} < m_Z/2$ NOT excluded by Z width

	$H\toLJ$	LJ searches	LJ using EMF	
Uncove	ring Higgs			

For $m_{Higgs} \sim 100$ GeV,

- Order 100 Higgs to lepton jets decay per experiment at LEP2
- Order 10000 Higgs to lepton jets decay per experiment at Tevatron and counting
- Order 1000 Higgs to lepton jets decay per experiment at the LHC and counting

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

all waiting to be uncovered by a clever analysis...

	$H\toLJ$	LJ searches	LJ using EMF	
Uncove	ring Higgs			

For $m_{Higgs} \sim 100$ GeV,

- Order 100 Higgs to lepton jets decay per experiment at LEP2
- Order 10000 Higgs to lepton jets decay per experiment at Tevatron and counting
- Order 1000 Higgs to lepton jets decay per experiment at the LHC and counting

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

all waiting to be uncovered by a clever analysis...

(日)

Published Searches

Closely spaced leptons do not satisfy usual isolation criteria and will not reconstruct as leptons. New methods and tools have to be developed to discover LJs at colliders

- Search for a dark photon produced in association with a photon at Tevatron's D0, D0 [0905.1478] (sensitive to certain susy models with gauge mediation, not discussed here)
- LJ + Missing Energy search at Tevatron's D0, D0 [1008.3356] (sensitive to a wide class of lepton jets)

	LJ searches	LJ using EMF

D0 Lepton Jet Search with 5.8 fb-1

- Seed track of p_T > 10 GeV matching to EM cluster or to hits in outer muon system
- At least one companion track of pT > 4 GeV within $\Delta R \leq 0.2$ of the seed
- Isolation in the $0.2 < \Delta R < 0.4$ annulus around the seed
- Require two such LJ candidates separated by $\Delta R > 0.8$
- Background from jets and photon conversions becomes marginal at large missing ET

End

Constraints on $H \to LJ$

- Higgs decaying to LJs was not specifically targeted by D0, but the search is inclusive enough to constrain our idea as well
- $\bullet\,$ We estimate D0 puts a constraint on the Higgs mass in a subclass of models up to $\lesssim\,$ 150 GeV
- Models that produce narrow LJs with a small multiplicity of leptons in jets are severely constrained
- However in certain models LJs can be
 - wider than $\Delta R \sim$ 0.2 (so that isolation criteria not satisfied), and/or
 - have a large multiplicity of leptons (so that there's no high p_{T} tracks to serve as seeds), and/or
 - contain little missing energy,

in which case they would not be picked by D0 search

 $\bullet\,$ This subclass of models is not constrained by any search so far, and allows the Higgs as light as $\sim\,$ 100 GeV

 ${
m H}
ightarrow {
m LJ}$

LJ searches

Another idea

AA,Ruderman,Volansky,Zupan [1007.3496] : using jet electromagnetic fraction (EMF) and charge ratio (CR) to target a more general class of electron LJs

$$\mathsf{EMF} = \frac{E_{EM}(j)}{E_{tot}(j)}$$

 $\mathsf{CR} = \frac{\sum p_T(j)}{E_{EM}(j)}$

Obviously, for lepton jets we expect EMF \sim 1 and CR \sim 1...

- QCD jets consist mostly of π^{\pm} (who deposit in ECAL and HCAL) and π^{0} 's (who promptly decay to photons, therefore deposit mostly in ECAL)
- Precise particle content of jets varies wildly on event-to-event basis
- Jets with high π^0 content can have EMF \sim 1, much like LJs
- $\bullet\,$ But those jets have few charged particles, therefore CR \ll 1, unlike LJs

LJ	LJ searches	LJ using EMF

Methodology

- Concentrate on W+h and Z+h Higgs production channels (gg → h swamped by dijet background) at Tevatron's D0 and LHC's ATLAS
- Main background from W + 2j, Z + 2j.
- Signal and background generated at parton level in MadGraphv4 and BRIDGE, then showered and hadronized in Pythia 6.4.21
- PGS is too simplistic for simulating EMF and CR; instead we used a private MC (*ToMErSim*), taking into account parametrization for EM and hadronic showers in detector material, non-compensating effects (e/h) and detector smearing
- Simulation is tuned to D0 and ATLAS using dijet EMF data

	LJ searches	LJ using EMF	End

Analysis and Cuts

- Exactly two jets △*R*(*j*₁, *j*₂) > 0.7
- **Z+h:** 2 opposite sign same flavor isolated leptons (I = e, μ): $p_T(I) > 10$ GeV, $|m(I_+, I_-) m_Z| < 10$ GeV
- W+h: 1 lepton and missing $p_T : p_T(I) > 20$ GeV, $p_{T,miss} > 20$ GeV
- *N*_{track}(j) ≥ 4 (to cut down photon conversions in tracker)
- EMF cut: 0.95 < EMF < 1.05 for D0, while for ATLAS 0.99 < EMF < 1</p>

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• CR cut: 0.9 < CR < 1.9 for Z+h and 0.95 < CR < 1.25 for W+h.

	LJ searches	LJ using EMF

Results

		W + h		Z+h	
$m_h = 120 \text{ GeV}$		Signal(Eff.)	Bckg	Signal(Eff.)	Bckg
Tevatron	Kinematic	87 (18%)	$4.4 imes10^5$	10.6 (18%)	$2.8 imes10^4$
(10 fb^{-1})	EMF+CR	14.4 (3%)	5.9	3.5 (6%)	1.4
LHC	Kinematic	35(17%)	$4.9 imes10^5$	5.2 (25%)	$3.6 imes10^4$
(1 fb^{-1})	EMF+CR	4.9 (2%)	0.7	1.5 (7%)	0.7

In Z+h Higgs mass can be reconstructed assuming missing energy aligned with the jets (much as in $H\to\tau\tau)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Ongoing experimental efforts

- L3 search for $H \rightarrow LJs$ (Princeton)
- D0 search for $H \rightarrow LJs$ (Rutgers)
- $\bullet~$ CDF search for H \rightarrow LJs (Chicago)
- CMS search for prompt and displaced muonic LJs (Princeton)
- CMS search for hadronic LJ production (Rutgers)
- ATLAS search for hadronic LJ production (SLAC)
- ATLAS triggering on displaced LJs (Seattle)
- ...

Famous Last Words

- A light Higgs decaying to multiparticle final states, either as the leading or the subleading channel, is a well-motivated possibility and therefore it should be searched for in colliders
- Higgs decaying to lepton jets is a possibility that has not been experimentally explored to date - thousands of events possible in Tevatron and 1st year LHC data
- Searching for lepton jets using EMF and CR gives a good sensitivity to a wide class of models with lepton jets

End