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Total lntegrated Lummosnty 2010 (Mar 30 10:00 UTC - Nov 01 11: 45 uTC)

— Dellvered 46.36 pb™'

'Ig_ — Recorded 42.51 pb~' CMS Prellmlnary
- : : :

29/0% 12/05: 25/051: oa/os. 21/09i 04/11 /' S
;ﬁ/ Cleaning
A : 7

[ “ﬂ

More than ALICE
40 pb-1 dellvered to
ATLAS and CMS, already
a lot of data to look at

and to start searches!
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§! Road Map to Discoveries

ADD X-dm @ 9 TeV, Composneness@SOTeV
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First physics run in 2010-2011: 1 fb'' @ 7 TeV
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@ Commissioning Detectors: =
Understanding the Variables...

From the first collisions day, a
lot of results have been
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10— T
ATLAS Selections:

>
appearing very quickly c 10 Preliminary O o
L W R oo
= Understanding and “ooe N — S
commissioning of the 10° E
detector is in well advanced E -
stage 10F .
= Mandatory before 1k T
exploring new territories... 0 2 40 6 8 100

ET™* [GeV]
Standard Model signals are becoming background of

searches, need to have a proper evaluation of their
contamination in signal area (too large to number of
events to be simulated). 5/26



Which Methods to Use...

@

Depending of the signal studied, different kind of
background:

- Resonance like signal:

- Propagation Fit and subtract background from the fit
- Factorization cuts

- Looking in tail of distributions (on top of previous):

- Templates

- Replacement Method

- Various Matrix Method

ne»r-»

- Various techniques can be used for cross check, some
time mandatory to do them in sequence
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Find a control region in phase

space where SM background A
dominates.

Fit Propagation

nre»r-»

& QCD model from data
MC processes
R Data
Use measurements in this \
region to infer SM \
background in signal region. ‘

Candidate Events

Should ensure the fit function
Is valid in the signal area.

Discriminant

Ex: Searches with isolated Fit in extrapolation to
|eptons to determine sideband signal region
contamination from non

isolated leptons.

7/26



u+Jets+ME- Signature

Looking at samples after full selection except isolation.
Determine the shape of the function to fit in a background like

sample. CMS PAS SUS-10-001
Lo L T | T T T T | T T T T | T T T T | T T T T | T I: Lr) B T T T T | T T T T | T T T T | T T T T | T T T T | T I_
g 70 :_ C*MS pre"minary —- Data N O. [ M+JetS+MET Signature —o— Data ]
: Ns=7TeV,14nb" [— gt | < 2501 —  Fitresult |
C 1 Fit si i [ CMS preliminary [ Fit prompt |4
0 60 7] Fit signal H 7)) Ea P promp
G:) C | ] q:) \s=7TeV,53nbm 1 Fit background |
T 500 | [Tl B £ 200 — mCprompt ]
L E B ( ¥3/ndf =1.3 E L I —— MC background ||
401 b + iy R 150(} =
30i/f + u"v e I Prompt: 251.2 = (17.9)__ (M, control = 248) ]
ke ] 100K Background: 66.2 =+ (11 .é)stat_ (M_ control =72) __
10F  Landau curve } e ’} )
0: L1 1 | | 11 11 | | 11 | | 11 11 | | 11 | | | I: I ‘I 1 | | | | | | ‘H | | \ I I h ’
0 05 1 15 2 25 0 05 1 15 2 25
Relative isolation Relative isolation

Fit of signal can also be done using simulation.
= Good agreement between fit estimation, data and simulation

control
8/26



e+Jets+ME; Sighature

Two kinds of background:
- heavy-flavor decays and jets mis-identified as electron
- electrons due to photon conversion

Select control samples dominated by each of above sources by inverting
selection cuts

Perform fit using Relative Isolation (Rellso = p;(e)/ZE; r.o.3) distributions

for each background. CMS PAS SUS-10-001
8100:""I""I""I""I""I""I"" AREERERRNRERRS 81003'"'l'"'I""l""I”"l""I”"I""l""l"":
S 90 CMS preliminary E S goF CMS preliminary E
7 anFue = - 3 @ on\NS = 5nb! MET<20Gev 3
% 80 s=7TeV,12.5 nb™ s E % 805—5 7 TeV,12.5 nb --g{ta Ite .
- — Fi ] - — Fit resu 3
% 70F wtger:::;te E s 70F W template E
60:— [ Background template 7 60L D.Backgl"ound template E
= .- 'Fakes' template = - - 'Fakes’ template 3
503_ --- 'Conversions' template —f 505 -« 'Conversions' template 3
405 + E 40- + E
105 = 108 ... E
0ElT:-:.lulu:.l.:'l"'i'.lnlnfrT’l“l"l'f.1"'1"1"1'1-;!,'1'1‘1-;:|-|-.LJ-{-r-;-|-| pebopn. ,,E 0 i b e s i T e i P PR T
0 010203040506 07 08 09 1 D 0102 0.3 04 0.5 06 0.7 0.8 0.9 1
. . Relative Isolation
Relative Isolation
After: RellIso<0.3 After (RelIs0<0.3)
Predicted : 224 + 13 Predicted : 215 + 13
Observed : 263 Observed : 215
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! Factorization Cuts/Scaling - &

Determine all efficiencies of the cuts selection and
weight a background like sample by all efficiencies.

Mainly to ensure that a given SM background can be
neglected in the final selection, or using higher
statistics sample:

(0.@)

- Berends-Giele scaling method: W= = w2ets. ) “ (72t /71t
- Scaling distribution according to resolution etc

Need to control the correlation between cuts and/or
ensure that selection do not bais scaling.
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Efficiency

Same Sign di-Muons Searches’

Selection cuts are uncorrelated
= selection efficiency for each cut measured in control samples

CMS PAS SUS-10-001

—_—

10"

_ ........................... ....... - Predlctlon of M and M (8 2) :
| ¥ B
10" 1

Relative Isolation Cut

Di-Muons samples before
isolation (dominated by
multijet events)

Isolationof u, = ¢, ;
Isolation of u, = ¢,

€nlicuts = E:Isoul . 8Isoyu2

Good agreement between
prediction and observed

= multijet background can
be scaled down by (¢,,,)?
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Smearing

Modify Monte Carlo samples to mimic the

arXiv:0901.0512 (2009)

data: £wtamas /N
Mostly used for QCD events to introduce % Ful smearig urcn
Jet Resolution and its effect on missing ET.§ " =~ oo E
-------- Non-gaussian component
- - - 10°E =
* Derive Gaussian part of smearing - MC
function from y + jet control sample 10 :
- Derive non-Gaussian part from Lo RS
Mercedes events (), requiring thatthe @~ R
MET is co-linear with one of the jets 2 ATLAS |
o VOF E
o~ —*— QCD estimate
- Combine smearing functions, > ok B aco data _
- m - - o= o 105 — Other SM
normalising with di-jet sample g | — sus
. 10%E 3
i i g I MC
* Apply smearing function to low MET g | -
events to predict the tail in the high
MET signal region. 1t 1

| =
4000 5000 6000
M, [GeV]
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Templates

Define a signhal-depleted control sample
Determine the shape of background in this region
Propagate the shape of the background in a signal
like region.

Need to understand the variables shape in control
region to port it in signal region.

CERN-OPEN-2008-20

> TT 1T I TTrTT I TTrTT I TTrTT I IIIIIIIIIIIIIIIIIIIIIIII > TTrTT I TTrTT I TTTT I TTrTT I IIIIIIIIIIIIIIIIIIIIIIII
Q | o L
8101 Ttbar (bkg): & 'SU3 (signal)
o = = e
© or — Signal Region . ©or L — Signal Region
a i == Control Region o i == Control Region |
- 10°F = ~ 10 E
2 | 2 F
g 5 I
b 10E ATLAS b =
1E . E 107 3
A I llllllllllllllllllllllllllll _llll[lIIIIIIIIIIIIIIIIIIIlIIIIIIIIII[lIIIIIIII =
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Missing Er [GeV] Missing ET [GeV]
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Lepton+jets+MET Signatures,

CMS PAS SUS-10-001

= MET background from
real MET (e.g. in W/2)
and MET due to mis-
measurements

= Use MET templates
from multi-jet events
to predict MET for g
+jets events

CMS preliminary, 65 nb™ at 7 TeV

e v +=3 jets data

k.
<
I\Ill\l T T

= —— Template prediction

Events /5 GeV
|
;:‘rl
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CMS Preliminary, 65 nb’, s =7 TeV
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50 < H; <300
N,=3
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<H;<400
N,=3

MET (GeV)

MET templates from multi-jet events

< H; < 1000

+NJ=3

MET (GeV)

Good agreement between predicted
and observed distributions:
for MET > 15 GeV

predicted = 12.5
observed = 11
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% Replacement Method

Use a nhone standard model process identified from
data and "modify” it in order to simulate another
standard model process.

Example:

Large missing E; searches + jets:

Z +jets — vv + jets = irreducible background

P‘ .?7 y + jets
‘ Strength: large statistics
7/ g ! \ " andclean at high Er
. Weakness: background at
Z— I+ jets W. low ET, theoretical errors
Strength: very clean %

Weakness: low statistics

W — lv + jets
Strength: larger statistics

Weakness: background
from SM and SUSY 15/26



Z+jets—>vv +jets

Select y + =3 jets with E(y)>150 GeV
Remove photon from the event

CMS-PAS-SUS-08-002

% :""I""I""I""I""l""l""l WJJ
Recalculate MET Swell = ij
Normalise with o(Z+jets)/o(y+jets) z F "= ~Zjj
v 10 E =
from MC or measurements @ E - 100pb™" 2
0 =m:ﬂ::“‘:s: _é'
E MC Tog ]
CMS Preliminary 107 B o SR
- — T ° 100 pt‘)‘f‘; @‘”1 4TV oM Boson ptiGevsc™”
2 hy .
s i TTZovy L <t A Rt A At At A AN R M=
g 355 -
5 10 | —— v prediction 3 Etoge E
s 25 Ft- E
2 -
g 15 £ A =
1 1E i T . e 43
- 05 £ -MC R R +€#-?- 1:
| 00 50 " T00 150 200 330 300 350 400 450 500
| Boson Pt [GeV/c]
w‘l#
ok Good agreement between
0 200 400 600 800 prediction and estimation.
E-like (GeV)
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Matrix Method “a la D@"

(or Tight/Loose Ratio)

N
;%%Ez

An initial sample containing N, .. events

—->Applying an additional cut to reach a second sample
containing N;;,,; events which is a subset of the initial
sample

Each sample contains a given humber of signal (N_..,)
like and background (Ng,,.) like. Fraction are changing
as follow:

ne»r-»

loose _ loose loose

Cut g N = Niea T Niake
tight — loose loose

N - GrealNreal T €fal efoll\e

Challenge: calculating € ., and &, .

Mainly used to determine multi jets background in
analysis selecting on leptons.

17/26



When using leptons, use Tag and \ '
Probe to compute g, / NS

 require a the I*I- pair to be within :
a m, window Tag eleetr/on
* high lepton purity can be reached

with tight ID cuts on the “tag” and Probe electron
the m, window —

For &, 100k for background dominated samples
(jets dominated samples, lepton-jets back to back
or W+jets with W in the other lepton flavor)
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Same Sign Searches

Use a jets dominated control sample (loose lepton-id & isolation)
to measure & . (= "TL ratio” ) as function of kinematics
variables

Tight-to-Loose-Ratios using different jet-triggered samples

g 04p 1 o 0.7p : :
® F CMS Preliminary ] ® [ CMS Preliminar
5 035) genb,Ns =7 Tev —— HLT_L1Jet6U 1 3 o6b s \E=7Tyev —— HLT_L1JetéU ]
st HLT LiJettou | F S HLT_L1Jet10U
ad: —- HLT_Jet15U ] 05F —- HLT_Jeti5U
0.25F ; ~a- HLT_Jet30U - : : ~a- HLT_Jet30U 1
SRR : 0.4F B ]
0.2F i ' 3 [ 1 ]
0.15 = ] 03—__§___ ........................ ;
o1t Electrons : 02~ Muons P ]
0.05F ] O S .
ot : : : : : : : . . . . ]
10 15 20 25 30 35 0 Q
B (GeV/d 10 15 20 25 30 %53 GovidO
Channel Predicted Observed
ee 0.431938 0
- - - 0.14
Consistency in predicted & ey 0.141018 1
observed number of events. up 0.2203¢ 0

CMS PAS SUS-10-001
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Top Rediscovery

In sample for &, ., contamination of signal can appear.
Equation of N, and Ny, can be rewritten and by iteration,

bias on &, . can be removed.

ATLAS-CONF-2010-087

> L I T I I I I I I | I I. I I I I I I ] > : I I I I l I I I T | | I. I I | I I I I :
- [} e+jets o 90 L+jets —
QC D IS g 250+ ® Data295nb’  _ g 80 - ® Data 295 nb™' .
H - - ol T - — o ]
eStl mated by ; ’// :ItV+jets : (\D E * :/tv+jets E
- - - B zZ+jets § T 70 [ Z+jets —
this method in Ezoo — R :‘;:» - # —onfil :
i B oco - 60  oco =
eaCh Of the bl n 7/ QCD uncert. i . + 7/, QCD uncert. :
of the 150 ATLAS Preliminary | S0z, ATLAS Preliminary
distribution for [ro-zesm® 40 | [Lat=zoson’ -
semi-leptonic 100 ‘: 30 ﬁ =
top searches. 4 ] 20 i :
p ALY .

+ ] 10 E

100 150 200 00 50 100 | 150 200
Transverse mass [GeV] Transverse mass [GeV]

Fair agreement between data and the sum of MC samples and

multijets estimation.
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XN
Q%Ea
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Extension to Di-Leptons

The system of equation can be written for Di-Lepton final
states searches:

N7 | T rf fr ff (NRr
Nrp| _ | r(l—r) r(1—f) f(L—=r) f(L—1) NRrp
Nrr (L—=r)r (1—=7)f (L= f)r (1=1)f Nrr
Nee|  [A=r)(A-7r) A-7r)A-F) A-f)1-r) Q-F)A-F)] |NrF]

With:

f=¢c1e N+ = Number of events in Tight-Tight

F=€ . N,, = Number of events in Loose-Loose

By solving the equation, each sample composition (Ngy =
Number of events containing two real leptons) can be found.

21/26



@

Matrix Method “a la CDF”

(ABCD method/M;/Tiles)
Simplified version of the matrix method “a la D@".

Splitting a 2D phase space by 2 criteria to obtain a signal like
area and background like area:
A

ne»r-»

Y,

A C

<

B D

Hypothesis: oo .

- Neglecting signal contribution in regions B and D

- X variables has no effect on studied background

- Assuming that variables x and y are uncorrelated

= Number of background events in signal region A can be
evaluated as N, = Ng X N./N,.

Main issue: find uncorrelated variables

>
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@ Tiles Method

Variation of Matrix Method “a la CDF":

ATL-PHYS-PUB-2009-077

Ill'l"IT{'III III

Use M; and M_(=Z E; of ALL objects) as §10 4t tapon Prminar 3§§ Susvue
the two variables 2 = MC w3
(M; > 100 GeV, W decay is background). %"= : égg ot
Each quadrant is named tiles. 10F * DiBoson
Hypothesis: (;???
-Relative inclusive fractions of SM L e W T T‘E
background events in each tile are e L T
predicted by MC simulation. rensverse ass foe¥]

- Discriminating variables are mutually independent for
sighal events.

- In presence of signal, the distributions of events among
the tiles need to be different for S|gnal and

: o1 ATLAS. brenmmaxy S "F T T ATIAS Prekminary 3
baCkground 8 500:_ [0 SUSY (SU3) NI :.'5 P (3 500:_ O SM .. _:
f E ce_ TRl 20800 Tco oo f E AR - -]

400 400F

- B -

300 300F

E ;4 SAARAE R R - F

100 SEs £

E A :::"ggu 100:

c_l l. L --HEE =

200 400 600 800 1000 1200 1400 1600 1800 2000 0=500 400 600 8OO 1000 1200 1400 1600& é 0
M, [GeV] 3436
off



@ 2x2 Tiles Method

In each of the tile:

ne»r-»

600

— —SM =S — —SM =S
Na = MN"+N°, N = ffMNT+ N

= F [ ) ' 'giqu's’ ﬁr'elir'n.ﬁ%;ylé

Ne = SMEML SRS, Np = SNV N 2L
Where the f represents respectively the oo
fraction of SM/Signal in a given tile (from MCY™t . E
Requiring further that the signal variables e Agggﬁ
be independent: 5600 10000 460100 T80T

fi = U-fiA—fig),  f5 = (1—fig)ht

fCS — fﬁeﬁ(l_f]éf]')’ fDS — fﬁgeﬁfjtslfa
= System can be solved:

N =5 fDl_ ) {fDNA — JeNg— fsNe + falp

- [( — (fcNB) — fo (Na+2Ng) + fgNc + faNp + 2fBND)2
1/2
—4(fpNg — fgNp) ( (fc + /o) (Na+Np) — (fa+ f8) (Nc +Np) )] }

1 . S _ SM
= And sighal: N°> =Ny+Ng+Nc+Np—N 24/26



N\ A
X T -
Y NxN Tiles Method
= ATL-PHYS-PUB-2009-077
Split the phase Space in N tileS, N2 @ 2x2 Tiles rrllethod SU3+SM — ATLAS Prehmlnary
tlcJ Lo Toy expenments ° Toys SU3 var. corr ofF
equations can be written. £ soo_—_agldof 000  ldof =000 =
Ignoring signal correlation in each of & , b men -770:06 woen ~TO1L08
the tiles, the problems is over > f ]
constraint I ]
- Define extended negative log- 200 :
likelihood:_,, » _ z (N;; —N;;1nN;)) 100F s
i,j=1 C L ]
Minimizing —InZs solving an R oo % 50
unbinned maximume-likelihood (ML) Estimated signal events ()
- - 8x8 Tiles method: SU3 + SM_ ATLAS Prehmlnary
flt, Where the baCkground and SIgnaI ‘UE) 700 O Toy expenmentsl ! . TOYS SU3 var. COfI’ OTF
H H M H o - x2/dof = 67.4/48 2/dof = 56.7/48
probability density functions (PDF) £ oo K100t =07 | xTdor= 58
are one two-dimensional and two & o Smzisied mean = ee e
one-dimensional binned histograms. 3 .y

= Improve information content of 300
the fit (more precise determination 200
= Probes the signal shape in 2D 100
= But signal correlation in each tiles, o . 2 ood
induce a bias... Estimated signal evefésl(glé)

=
(@]

llllllllllllllllllllllllllllllll
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Conclusion

* LHC is delivering a huge chuck of data that
experiments are currently using for commissioning
and looking for new physics.

* A large variety of method to estimate SM process
from data have been looked at over MC to
understand the bias and are currently exercised on
data.

* The variety of methods allows cross check and
combination of them to reduce systematic/bias.

= Moriond results will integrate all this and perhaps
we will see some signal above the SM background...
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Charge Asymmetry

In case of dilepton searches, use the symmetry in
the charge of multijet background to determine it.

Same sign searches:

- Very low Standard Model background rate
- Backgrounds from charge mis-identified
Opposite sign searches:

- Use opposite-sign, opposite-flavor sample to
subtract SM background
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New Variables:
All Hadronic Searches

Barr and Gwenlan

re jet
arXiv:0907.2713 LSP LSP
/ N\

je.t/ fopology (aco)  Jet sionAL opoloay et

ETj2 _ \/ETj2/ETj1

My ;5 B \2(1-cosAg)

A new variable combining angular
and energy measurements (o)

No dependence on MET = robust
Originally proposed for di-jet events

# events(o; > 0.55)
# events (o, < 0.55)

PRL101:221803 (2008) & CMS-PAS-SUS-09-001

x107°
0.2 = H; > 450 GeV/c
0 1.8 5 H; > 350 GeV/c
0.16 E | \ 300 < H, < 350 GeV/c
0145 | | Lusoreim
= o preliminary
Ogﬁ - . .| As=10TevMcC
A0 1 |
r
0.08 - l
0.06 | SUSY + SM _+ |
0.04F . R
] R S
00 1

—e— H,;>160 GeV

CMS preliminary
\'s =7 TeV, 54 nb'
------ A H;>160 GeV: removed jets :

2 3
Inl leading jet

-> generalised up to 6 jets B oE
Perfectly balanced events have % o008
aT=0'5 = o.oos%
Mis-measurement of either jet leads °™":
to lower values o0zt
Studies the variation of the variable oot

as function of others K

[
=N
a9
NS |
;En_
&T._
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