

Data-Driven Background Estimates at the LHC

Stéphanie Beauceron GDR Terascale 4th November 2010, Brussel

On Behalf of ATLAS and CMS Collaboration

Vrije Universiteit Brussel

Outline

LHC is starting the searches Main methods on the market:

- Fit
- Scaling
- Templates
- Replacement Method
- Matrix Methods Conclusion

Road Map to Discoveries

Commissioning Detectors: Understanding the Variables...

From the first collisions day, a lot of results have been appearing very quickly

 → Understanding and commissioning of the detector is in well advanced stage
 → Mandatory before exploring new territories...

Standard Model signals are becoming background of searches, need to have a proper evaluation of their contamination in signal area (too large to number of events to be simulated).

Depending of the signal studied, different kind of background:

- Resonance like signal:
- \rightarrow Propagation Fit and subtract background from the fit
- \rightarrow Factorization cuts
- Looking in tail of distributions (on top of previous):
- \rightarrow Templates
- \rightarrow Replacement Method
- \rightarrow Various Matrix Method

 \rightarrow Various techniques can be used for cross check, some time mandatory to do them in sequence

Fit Propagation

Find a control region in phase space where SM background dominates.

Use measurements in this region to infer SM background in signal region.

Should ensure the fit function is valid in the signal area.

Ex: Searches with isolated leptons to determine contamination from non isolated leptons.

Variation: Fit of multiple contributions

μ+Jets+ME_T Signature

Looking at samples after full selection except isolation. Determine the shape of the function to fit in a background like sample.

Fit of signal can also be done using simulation. → Good agreement between fit estimation, data and simulation control

e+Jets+ME_T Signature

MET < 20 GeV 🗕 data

— Fit result

W template

···· 'Fakes' template

Background template

···· 'Conversions' template

William Control to the second state of the second second

Relative Isolation

Two kinds of background:

- heavy-flavor decays and jets mis-identified as electron
- electrons due to photon conversion

Select control samples dominated by each of above sources by inverting selection cuts

Perform fit using Relative Isolation (RelIso = $p_T(e)/\Sigma E_{T R<0.3}$) distributions for each background. CMS PAS SUS-10-001

9/26

Determine all efficiencies of the cuts selection and weight a background like sample by all efficiencies.

Mainly to ensure that a given SM background can be neglected in the final selection, or using higher statistics sample:

- Berends-Giele scaling method: $W^{\geq 4jets} = W^{2jets} \cdot \sum^{\infty} (Z^{2jets}/Z^{1jet})^i$
- Scaling distribution according to resolution ⁱ⁼²/_{etc}

Need to control the correlation between cuts and/or ensure that selection do not bais scaling.

Selection cuts are uncorrelated

→ selection efficiency for each cut measured in control samples

Di-Muons samples before isolation (dominated by multijet events)

Isolation of $\mu_1 = \epsilon_{Iso\mu 1}$ **Isolation of** $\mu_2 = \epsilon_{Iso\mu 2}$

 $\varepsilon_{AIICuts} = \varepsilon_{Iso\mu1} \cdot \varepsilon_{Iso\mu2}$

Good agreement between prediction and observed \rightarrow multijet background can be scaled down by $(\varepsilon_{lso\mu 1})^2$

Smearing

Modify Monte Carlo samples to mimic the data: Mostly used for QCD events to introduce Jet Resolution and its effect on missing ET.

- Derive Gaussian part of smearing function from γ + jet control sample
- Derive non-Gaussian part from Mercedes events (\downarrow), requiring that the MET is co-linear with one of the jets
- Combine smearing functions, normalising with di-jet sample
- Apply smearing function to low MET events to predict the tail in the high MET signal region.

12/26

Define a signal-depleted control sample Determine the shape of background in this region Propagate the shape of the background in a signal like region.

Need to understand the variables shape in control region to port it in signal region.

Lepton+jets+MET Signatures

CMS PAS SUS-10-001

 MET background from real MET (e.g. in W/Z) and MET due to mismeasurements

 Use MET templates from multi-jet events to predict MET for g +jets events

MET templates from multi-jet events

Good agreement between predicted and observed distributions: for MET > 15 GeV predicted = 12.5 observed = 11

Replacement Method

Use a none standard model process identified from data and "modify" it in order to simulate another standard model process. Example:

Large missing E_T searches + jets:

Z +jets $\rightarrow vv$ + jets \rightarrow irreducible background

Z → II + jets Strength: very clean Weakness: low statistics

W → Iv + jets Strength: larger statistics Weakness: background from SM and SUSY

Z+jets→vv +jets

Select $\gamma + \geq 3$ jets with E(γ)>150 GeV Remove photon from the event Recalculate MET Normalise with $\sigma(Z+jets)/\sigma(\gamma+jets)$ from MC or measurements

Good agreement between prediction and estimation.

CMS-PAS-SUS-08-002

Matrix Method "à la DØ" (or Tight/Loose Ratio)

An initial sample containing N_{loose} events \rightarrow Applying an additional cut to reach a second sample containing N_{tight} events which is a subset of the initial sample Each sample contains a given number of signal (N_{real}) like and background (N_{fake}) like. Fraction are changing

as follow:

Challenge: calculating ε_{real} and ε_{fake}

Mainly used to determine multi jets background in analysis selecting on leptons.

For ε_{faker} look for background dominated samples (jets dominated samples, lepton-jets back to back or W+jets with W in the other lepton flavor)

Determining the parameters

 high lepton purity can be reached with tight ID cuts on the "tag" and the m₇ window

When using leptons, use Tag and **Probe to compute** ε_{tight} :

- require a the I⁺I⁻ pair to be within a m₇ window

Same Sign Searches

Use a jets dominated control sample (loose lepton-id & isolation) to measure \mathcal{E}_{fake} (= "TL ratio") as function of kinematics variables

Tight-to-Loose-Ratios using different jet-triggered samples

Top Rediscovery

In sample for \mathcal{E}_{fake} , contamination of signal can appear. Equation of N_{loose} and N_{tight} can be rewritten and by iteration, bias on \mathcal{E}_{fake} can be removed.

Fair agreement between data and the sum of MC samples and multijets estimation.

CCNS (required)

The system of equation can be written for Di-Lepton final states searches:

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

With:

 $\begin{array}{ll} f = \epsilon_{fake} & N_{TT} = Number \ of \ events \ in \ Tight-Tight \\ r = \epsilon_{real} & N_{LL} = Number \ of \ events \ in \ Loose-Loose \end{array}$

By solving the equation, each sample composition (N_{RR} = Number of events containing two real leptons) can be found.

Matrix Method "à la CDF"

(ABCD method/M_T/Tiles)

Simplified version of the matrix method "à la DØ". Splitting a 2D phase space by 2 criteria to obtain a signal like area and background like area:

Hypothesis:

- Neglecting signal contribution in regions B and D
- X variables has no effect on studied background
- Assuming that variables x and y are uncorrelated

→ Number of background events in signal region A can be evaluated as $N_A = N_B \times N_C/N_D$. Main issue: find uncorrelated variables

Tiles Method

Variation of Matrix Method "à la CDF": Use M_T and M_{eff} (= ΣE_T of ALL objects) as the two variables

 $(M_T > 100 \text{ GeV}, W \text{ decay is background}).$ Each quadrant is named tiles. Hypothesis:

-Relative inclusive fractions of SM background events in each tile are predicted by MC simulation.

ATL-PHYS-PUB-2009-077

- Discriminating variables are mutually independent for signal events.

- In presence of signal, the distributions of events among the tiles need to be different for signal and

background.

2x2 Tiles Method

In each of the tile:

$$\overline{N}_A = f_A^{\rm SM} \overline{N}^{\rm SM} + f_A^{\rm S} \overline{N}^{\rm S}, \qquad \overline{N}_B = f_B^{\rm SM} \overline{N}^{\rm SM} + f_B^{\rm S} \overline{N}^{\rm S}$$
$$\overline{N}_C = f_C^{\rm SM} \overline{N}^{\rm SM} + f_C^{\rm S} \overline{N}^{\rm S}, \qquad \overline{N}_D = f_D^{\rm SM} \overline{N}^{\rm SM} + f_D^{\rm S} \overline{N}^{\rm S}$$

Where the f represents respectively the ³⁰⁰ fraction of SM/Signal in a given tile (from MC)²⁰⁰ Requiring further that the signal variables ¹⁰⁰ be independent: ⁰⁰

$$\begin{split} f_A^{\rm S} &= (1 - f_{M_{\rm eff}}^{\rm S})(1 - f_{M_T}^{\rm S}), \qquad f_B^{\rm S} &= (1 - f_{M_{\rm eff}}^{\rm S})f_{M_T}^{\rm S}, \\ f_C^{\rm S} &= f_{M_{\rm eff}}^{\rm S}(1 - f_{M_T}^{\rm S}), \qquad f_D^{\rm S} &= f_{M_{\rm eff}}^{\rm S}f_{M_T}^{\rm S}, \end{split}$$

→ System can be solved:

$$N^{\text{SM}} = \frac{1}{2(f_A f_D - f_B f_C)} \left\{ f_D N_A - f_C N_B - f_B N_C + f_A N_D - \left[\left(-(f_C N_B) - f_D (N_A + 2N_B) + f_B N_C + f_A N_D + 2f_B N_D \right)^2 -4(f_D N_B - f_B N_D) \left((f_C + f_D) (N_A + N_B) - (f_A + f_B) (N_C + N_D) \right) \right]^{1/2} \right\}$$

$$\rightarrow \text{And signal: } N^{\text{S}} = N_A + N_B + N_C + N_D - N^{\text{SM}}$$

NxN Tiles Method

Split the phase space in N tiles, N² equations can be written. Ignoring signal correlation in each of the tiles, the problems is over constraint

→ Define extended negative loglikelihood: $-\ln \mathscr{L} = \sum_{n=1}^{n} (\overline{N}_{ij} - N_{ij} \ln \overline{N}_{ij})$

Minimizing $-In \measuredangle = 1$ unbinned maximum-likelihood (ML) fit, where the background and signal probability density functions (PDF) are one two-dimensional and two one-dimensional binned histograms.

→ Improve information content of the fit (more precise determination
→ Probes the signal shape in 2D
→ But signal correlation in each tiles, induce a bias...

Conclusion

• LHC is delivering a huge chuck of data that experiments are currently using for commissioning and looking for new physics.

• A large variety of method to estimate SM process from data have been looked at over MC to understand the bias and are currently exercised on data.

• The variety of methods allows cross check and combination of them to reduce systematic/bias.

➔ Moriond results will integrate all this and perhaps we will see some signal above the SM background...

Charge Asymmetry

In case of dilepton searches, use the symmetry in the charge of multijet background to determine it.

Same sign searches:

- Very low Standard Model background rate
- Backgrounds from charge mis-identified

Opposite sign searches:

 Use opposite-sign, opposite-flavor sample to subtract SM background

New Variables: All Hadronic Searches

A new variable combining angular and energy measurements (α_T) No dependence on MET \rightarrow robust Originally proposed for di-jet events \rightarrow generalised up to 6 jets Perfectly balanced events have $\alpha_T = 0.5$ Mis-measurement of either jet leads to lower values Studies the variation of the variable as function of others

