Graviton + multi-jet production at colliders "GDR Terascale International meeting"

Priscila Massetto de Aquino

Katholieke Universiteit Leuven (KUL) & Université Catholique de Louvain (UCL)

3rd November 2010

[P.d.A, K. Hagiwara, Q. Li and F. Maltoni, in preparation]

The SM agrees to a great deal with the experimental data we have today, but there are several reasons to expect new physics at TeV scale.

Standard Model \Rightarrow radiative corrections to Higgs mass:

To have a Higgs boson with $m_H \leq 200 \ GeV$:

There might be new physics at TeV scale!!

Attempt to explain the HP: Extra-dimensional models

• ADD models = Large Extra Dimensional model

[N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, 1998]

• RS models = Warped Extra Dimensional model

[L. Randall, R. Sundrum, 1999]

Attempt to explain the HP: 4D model

Massless graviton model (4-dimensional with a large hidden sector)

[G. Dvali, arxiv:0706.2050]

[X. Calmet, S. D. H. Hsu, D. Reeb, arxiv:0803.1836]

New physics at the TeV scale

The LHC era: new expectations on the search for the new physics!

With the start of the LHC: very interesting phenomenology at hadron colliders!

• Many different BSM theories proposed with the same signature!

"How can we identify a theory?"

- Need of careful phenomenological analysis at colliders
- Simulation becomes very necessary!

Spin-2 particles in MadGraph/MadEvent

• Spin-2 particles introduced in MadGraph by in 2008

[K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, arXiv:0805.2554]

• Sub-routines updated and introduced in MadEvent in 2009

[P.d.A, K. Hagiwara, Q. Li and F. Maltoni, in preparation]

With these improvements: MG/ME is ready for phenomenology with ANY spin-2 particle!

On-going phenomenological project

Perform a full analysis on graviton production through **multi-jet** final state processes at hadron colliders for ADD, RS and MGM models.

Phenomenology on Graviton Emission at the LHC

1. Compare all models $\Rightarrow \neq$ final states:

ADD	Weakly coupled massive graviton	\Rightarrow	Missing <i>E</i> _T
RS	Strongly coupled massive graviton	\Rightarrow	Decayed product
MGM	Weakly coupled massless graviton	\Rightarrow	Missing E_T (+ threshold)

 \hookrightarrow need of a general / flexible implementation \Rightarrow MG/ME

2. Identification of signature and corresponding model \Rightarrow very difficult!

Need of accurate predictions for non-trivial observables: Pythia not enough!

- **3.** Solution \Rightarrow comparison with NLO
 - generate inclusive sample \Rightarrow MG/ME + Pythia
 - Compare multi-jet final state results X the mono-jet NLO

Use NLO for normalization, and distribution shapes more accurate..

Phenomenology on Graviton Emission at the LHC

1. Compare all models $\Rightarrow \neq$ final states:

ADD	Weakly coupled massive graviton	\Rightarrow	Missing <i>E_T</i>
RS	Strongly coupled massive graviton	\Rightarrow	Decayed product
MGM	Weakly coupled massless graviton	\Rightarrow	Missing E_T (+ threshold)

 \hookrightarrow need of a general / flexible implementation \Rightarrow MG/ME

2. Identification of signature and corresponding model \Rightarrow very difficult!

Need of accurate predictions for non-trivial observables: Pythia not enough!

- **3.** Solution \Rightarrow comparison with NLO
 - generate inclusive sample \Rightarrow MG/ME + Pythia
 - Compare multi-jet final state results X the mono-jet NLO

Use NLO for normalization, and distribution shapes more accurate..

Phenomenology on Graviton Emission at the LHC

1. Compare all models $\Rightarrow \neq$ final states:

ADD	Weakly coupled massive graviton	\Rightarrow	Missing <i>E_T</i>
RS	Strongly coupled massive graviton	\Rightarrow	Decayed product
MGM	Weakly coupled massless graviton	\Rightarrow	Missing E_T (+ threshold)

 \hookrightarrow need of a general / flexible implementation \Rightarrow MG/ME

2. Identification of signature and corresponding model \Rightarrow very difficult!

Need of accurate predictions for non-trivial observables: Pythia not enough!

- **3.** Solution \Rightarrow comparison with NLO
 - generate inclusive sample \Rightarrow MG/ME + Pythia
 - Compare multi-jet final state results X the mono-jet NLO

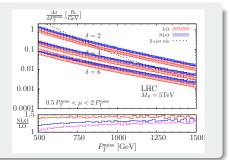
Use NLO for normalization, and distribution shapes more accurate..

Multi jet MG/ME + Pythia X Mono jet NLO

MG/ME + Pythia: multi-jet final state \Rightarrow need of a matching method

If ME and PS approaches are considered without any control: double counting between samples of different multiplicity!

Matching/Merge method


To \div the phase space in 2 regions characterized by the hardness of QCD emission

Х

NLO calculation to KK graviton mono jet in ADD

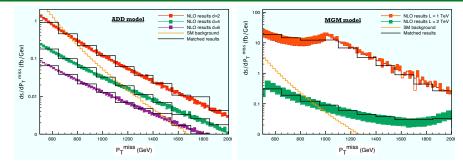
[S. Karg, M. Krämer, Q. Li, D. Zeppenfeld, arXiv:0911.5095]

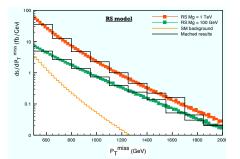
QCD corrections: sizable at the LHC!

Graviton Emission + Multi jets: MLM matching scheme

On-going project:

comparison MLM-Matching with NLO for ADD, RS and MGM


Distributions to be analysed:


 $\begin{array}{l} \rightsquigarrow \text{ Missing/graviton } P_T \\ \rightsquigarrow \text{ Pseudo-rapidity (jets, graviton)} \\ \rightsquigarrow P_T \text{ (first and second jets)} \\ \rightsquigarrow H_T = \sum |P_T^{jets}| \end{array}$

Cuts imposed (LHC and Tevatron):

	P_T^{miss}	$P_T^{1st jet}$	$ \eta $	Q ^{match}
LHC	> 500 GeV	> 50 GeV	< 4.5	> 50 GeV
Tevatron	> 120 GeV	> 20 GeV	< 4.5	> 30 GeV

Graviton Emission + Multi jets: P_T^{miss} results

Results for ADD, RS and MGM

- MLM-matched normalized with NLO results
- Excellent agreement between MLM-matched and NLO shapes
- Clearly, the irreducible background has a different shape!

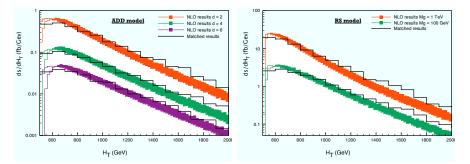
Graviton Emission + Multi jets: H_T results

Important: Matching results \Rightarrow more accurate

- Because of extra jets;
- \exists of variables that can only be well predicted by matching, such as H_T

Introduction of variable by CMS:

[CMS Collaboration, CMS-PAS-EXO-09-013]


• Defined as the vectorial sum of jets $p_T(jet)_i$ above a threshold p_t^0

$$H_{T} = \left| \sum_{p_{T(jet)_i} > P_{T}^{0}} p_{T}(jet)_i \right|$$

- H_T has been prove to be larger in signal than in QCD events
- More useful variable than E_T^{miss} in this case

Graviton Emission + Multi jets: H_T results

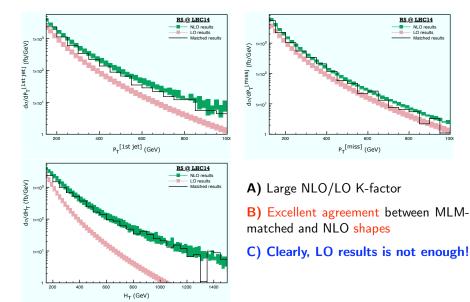
• H_T comparison MLM-matching X NLO results:

Results

- \rightsquigarrow Good agreement for low H_{T}
- \rightsquigarrow Harder distribution for large H_T

 \Rightarrow because matching considers up to 3-jets!

Comparison MLM-matching & NLO X LO results


Example: RS model with $M_{g} = 100 \text{ GeV}$. Matching up to 2 jets here.

RS @ LHC14

800

latched results

100

Summary and Conclusions

- 4D Massless Graviton Model: an alternative for solving the HP
- Spin-2 particles in MadGraph/MadEvent:
 - Ready for phenomenology!
- **Phenomenology** $pp \rightarrow Multi-jets + G$:
 - Detailed comparison btw NLO and MLM matching for ADD, RS and MGM
 - P_T^{miss} and P_T^{grav} shows good agreement between matched and NLO
 - Harder distributions for large H_T: matched computed up to 3 jets

Conclusion: Matching is needed to compute expectation at hadron colliders

→ and it is crucial depending on the distribution requested!

Thank you!

Acknowledgments:

This work is supported in part by the FWO - Vlaanderen, project G.0235.05, in part by the Belgian Federal Office for Scientific, Technical and Cultural Affairs through the 'Interuniversity Attraction Pole Program - Belgium Science Policy' P6/11-P, and in part by the Concerted Research action Supersymmetric Models and their Signatures at the Large Hadron Collider of the Vrije Universiteit Brussel and by the IISN "MadGraph" convention 4.4511.10.

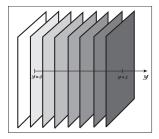
Explaining the HP with extra dimensions

How can they bring Mp to 1Tev?!

ADD/LED:

- Flat metric;
- $\bullet~\delta~$ extra-dimensions: Spatial and compact

$$M^2_{
m p} = M^{\delta+2}_* \, V_\delta \quad \Rightarrow \quad V_\delta = 8 \pi R^\delta$$


RS/WED:

Warped metric:

$$ds^2 = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$$

• Planck brane @ y = 0, TeV brane @ $y = \pi R$

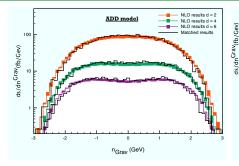
$$M_e = e^{-k\pi R} M_p$$

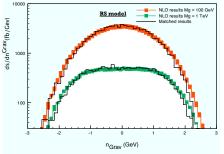
Explaining the HP in 4 dimensions

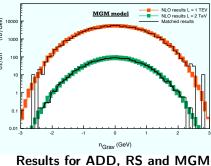
If strength of gravitational interactions = scale dependent:

 $G(\mu_*) \sim \mu_*^{-2} \qquad \Rightarrow \qquad M_{planck}(\mu_*) \sim \mu_*$

Consider a scalar field coupled to gravity:


 G_N/M_{pl} : It gets renormalized by virtual particles when quantum fluctuations are taken into account


$$rac{1}{G_{ren}} = rac{1}{G_{bare}} + c\Lambda^2 \quad \Rightarrow \mu_*^2 = rac{M_p^2}{(1+c)}$$


For $\mu_* \sim 1 \text{ TeV} \Rightarrow N = 5.6 \times 10^{33}$ new particles!

Therefore it must exist large hidden sector that interacts only gravitationally with the SM!

Graviton Emission + Multi jets: η^{grav} results

- MLM-matched normalized with NLO results
- Excellent agreement between MLM-matched and NLO shapes