

Flavour specific asymmetry from

muon asymmetry in LHCb

GDR-Terascale

Frédéric Machefert Friday November 5th, 2010 a_{fs} LHCb LHCb and a_{fs}

Introduction

- Keep in mind that
 - I am neither a SUSY expert
 - Nor a a_{fs} analysis expert
- I tried to understand from LHCb notes and presentations what LHCb can say about flavour specific asymmetries
- The a_{fs} measurements are studied in LHCb by
 - The flavour physics working group
 - And most specifically the semi-leptonic group
- These slides are mostly built from presentations by
 - Rob Lambert
 - Kim Vervink

B mixing and a_{fs}

- Neutral B mesons may oscillate
- Their evolution depends on

$$i\frac{\partial}{\partial t}\left(\frac{\left|B_{q}^{0}(t)\right\rangle}{\left|\overline{B}_{q}^{0}(t)\right\rangle}\right) = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{21} - \frac{i}{2}\Gamma_{21} & M - \frac{i}{2}\Gamma \end{pmatrix} \left(\frac{\left|B_{q}^{0}(t)\right\rangle}{\left|\overline{B}_{q}^{0}(t)\right\rangle}\right)$$

3 observables can be extracted

$$|\Gamma_{12}|, M_{12}, \arg\left(\frac{-M_{12}}{\Gamma_{12}}\right) = \phi_q$$

Where the mass eigenstates are :

• Defining
$$a^q \approx 2 - 2 \frac{p}{q}$$

• CPV in the mixing appears when $a^q \neq 0$

$$a^{q} = \left| \frac{\Gamma_{12}^{q}}{M_{12}^{q}} \right| \sin \phi_{q} = \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \phi_{q}$$

 $\begin{vmatrix} B_L^q \end{pmatrix} = p \begin{vmatrix} B_q^0(t) \end{pmatrix} + q \begin{vmatrix} \overline{B}_q^0(t) \end{vmatrix}$ $\begin{vmatrix} B_H^q \end{pmatrix} = p \begin{vmatrix} B_q^0(t) \end{pmatrix} - q \begin{vmatrix} \overline{B}_q^0(t) \end{vmatrix}$

• NB : to a new physics phase in ϕ^{NP}_s would correspond the same NP phase in the measured angle $\phi^{J/\psi\phi}_s$ from the decay $B_s \to J/\psi\phi$

GDR-Terascale

B mixing and a_{fs}

) a_{fs}

• Measure of a_{a} in flavour specific decays

• Measure of a_{fs} in the B_{d} and B_{s} sectors is supposed to be small

 $a_{fs}^{d}(SM) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$ A. Lenz and U. Nierste $a_{fs}^{s}(SM) = (2.1 \pm 0.6) \times 10^{-5}$ Hep-ph/0612167 for leptonic decays

Di-muon charge asymmetry

Measure CP violation in B semi-leptonic decays from the di-muon charge asymmetry : A^b_{sl}

$$A_{sl}^{b} = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

- Count the number of events with two B hadrons decaying semi-leptonically in two muons with the same charge.
 - One muon comes from direct semi-leptonic decay
 - One muon comes from direct semi-leptonic decay after neutral B meson mixing

Inclusive semi-leptonic charge asymmetry

- a^b_{sl} is equal to the charge asymmetry of "wrong sign" semi-leptonic B decays
 - Due to the B meson oscillation or background processes (ex : charm decays)

$$a_{sl}^{b} = \frac{\Gamma(\overline{B} \to \mu^{+}X) - \Gamma(B \to \mu^{-}X)}{\Gamma(\overline{B} \to \mu^{+}X) + \Gamma(B \to \mu^{-}X)} = A_{sl}^{b}$$

- Using both the B_d and the B_s :
 - A^b_{sl} is a combination of a^d_{sl} and a^s_{sl}
 - Introducing the fraction of B_d and B_s produced at D0 and measured by CDF

 $A_{sl}^{b} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s}$

• Theoretical prediction is (A. Lenz, U. Nierste)

$$A_{sl}^{b} = (-2.3_{-0.6}^{+0.5}) \times 10^{-4}$$

Final measurement

- The final measurement is a linear combination of those asymmetries
 - Reduce the correlated uncertainties in these asymmetries
 - A_{final}=A-αa
- The measurement is affected by
 - Effects that enhance the asymmetry
 - Muon reconstruction asymmetry
 - False muon associations
 - Proton punch through
 - Kaons/Pions decays into muons
 - Dilution factors

LA BORATOIRE DE L'ACCÉLÉRATEUR LINÉAIRE

The LHCb Detector

What LHCb can do on a_{fs}

L A B O R A T O I R E DE L'ACCÉLÉRATEUR L I N É A I R E

- Theoretically a_{fs} is simple for LHCb
 - It is a ratio of event counts
 - Efficiencies, triggering, acceptances, branching fractions, luminosity normalization, do not have to be considered
 - It can be done with the highest rate B-channels
 - LHCb will have a huge B statistics
 - LHCb has an excellent proper time resolution
- But in fact, this is a very difficult measurement
 - The measurement requires first the precise determination of several parameters
 - Detector asymmetries have to be extracted
 - Production asymmetries (proton-proton and not proton anti-proton) have to be corrected (0(10⁻²)?)
 - Prevents from using di-muon charge asymmetry
- For the first data sample, the priority is on
 - ϕ_s from $B_s \rightarrow J/\psi \phi$ (related to a_{fs} !)
 - $B_s \rightarrow \mu\mu$

LHC conditions at LHCb interaction point

- LHC/LHCb are performing well
 - Luminosity regularly increased :
 - 42 pb⁻¹ delivered, ~ 37pb⁻¹ recorded, ~ 35pb⁻¹ data flagged "ok"
 - LHCb efficiency is good
 - No major problem with the detector
- Beam conditions "unexpected"
- Priorities for 2010 (2011) lead to
 - Have a high statistics for muons
 - Muons not so penalized by pile up
 - High pile up ~ 2 3 (!)
 - Original plan : <1</p>
- The other physics channels suffer
- A simple solution would consist to
 - Increase β^{*}
 - We have the same as Atlas and CMS !
 - Even simpler and has been tested
 - Have not head-on beam crossings
- The pile-up effect on a_{fs} seems limited. High statistics should be soon avail.

The method : time-dependent, un-tagged

10⁻³ -> **10** -⁵

The method

Polluting asymmetries are much larger than a_{fs}

- Detector asymmetry $\delta_c \sim (10^{-2})$
- Production asymmetry $\delta_p \sim (10^{-2})$
- Background asymmetry $\delta_b \sim (10^{-3})$

$$\delta_p = \frac{N(\bar{I}_0)}{N(\bar{I}_0)} - 1$$

$$\delta_b = \frac{\overline{B} / \overline{S}}{B / S} - 1$$

The signals : $B^{0}_{(s)} \rightarrow D^{+/-}_{(s)}\mu^{+/-}\nu$, $D^{+/-}_{(s)} \rightarrow KK\pi$

- The selection on the first data samples
 - Mass resolution leads to a clean separation of
 - B_d and B_s states

- Hadronic decay
 - $\mathsf{B}^{0}_{(s)} \rightarrow \mathsf{D}^{\scriptscriptstyle +/\scriptscriptstyle -}_{(s)}\pi$, $\mathsf{D}^{\scriptscriptstyle +/\scriptscriptstyle -}_{(s)} \rightarrow \mathsf{KK}\pi$
 - Alternative method (precision 2-3x lower) / Control sample
 - Production asymmetries are smaller than in the semi-leptonic decay

Some B_d/B_s events

Detector asymmetries

Asymmetries from long muon tracks reconstructed

- Magnet separates +/- tracks \rightarrow +/- asymmetry
- As for D0, magnet field inversion should reduce the systematics
 - $3\% \to 0.1\%$?

Detector asymmetries

- Matter detector \rightarrow hadronic interactions are asymmetric
- Dominant systematics at the level of 1%

B meson production asymmetries

- There is an explicit production asymmetry at LHC (proton-proton)
- LHCb is at high rapidity : the asymmetries are the largest
- Control samples have to be analysed to measure this asymmetry
- MC estimations tend to give an overall effect < 10⁻²
- This effects cannot be removed by from a di-muon inclusive charge asymmetry
- Time-dependent exclusive muon asymmetry permits to extract either the production or the detector asymmetry on top of the asymmetry itself :

• The plan is to extract production asym. \rightarrow useful for other analysis GDR-Terascale

The measurements

- Extract a^s_{fs} and a^d_{fs}
 - Time-dependent un-tagged analysis
 - semi-leptonic/hadronic decay
 - $B_{(s)} \rightarrow D_{(s)} \mu \nu$
 - $B_{(s)} \rightarrow D_{(s)} \mu \pi$
 - Requires detector asymmetry input
 - Semi-leptonic $\rightarrow \sigma_a \sim 0.2\%$ (2fb⁻¹, stat. Only
 - ~1M signal events
 - Hadronic $\rightarrow \sigma_a \sim 0.5\%$ (2fb⁻¹, stat. Only)
- Measure $\Delta A_{fs}^{s,d} = \frac{a_{fs}^s a_{fs}^d}{2}$
 - Detector asymmetry are cancelled
 - Reduce the systematics
- 2 fb⁻¹ is the "nominal" luminosity per year
 - We have ~40pb⁻¹ in 2010
 - The official plan is 1.5fb⁻¹ in 2011 (?)
 - The first LHCb measurement of $\Delta A^{s,d}_{fs}$ at LHCb is planned for 100 pb⁻¹

Conclusion

- LHCb plan to measure $a^{(s/d)}_{fs}$ in the mode $B_{s/d} \rightarrow D_{(s)} \mu v$
 - Di-muon asymmetry \rightarrow impossible to remove the production asymmetry
 - The first measurement is planned for 100pb⁻¹ (we have 40pb⁻¹)
 - May hope for a precision of 0.2% (2fb⁻¹, stat.only) on a^s_{fs} BUT
 - Largest systematics from detector
 - Plan is to measure

$$\Delta A_{fs}^{s,d} = \frac{a_{fs}^s - a_{fs}^a}{2}$$

- This is the start up of the experiment \rightarrow many effects have to be understood first
- The priority are mostly on $B_s \rightarrow \mu\mu$ and ϕ_s from $B_s \rightarrow J/\psi\phi$ (same NP contrib.)

Backup

Neutrino reconstruction

LABORATOIRE DEL'ACCÉLÉRATEUR LINÉAIRE

- Use kinematics to reconstruct neutrino momentu
- Two ambiguous solutions
- The lower pt solution has the lower error

Pile up effects

- Problem related to proper time and pile up
 - How often do we get the correct PV
 - Is there a systematic effect with choosing the wrong PV

