Early SUSY Searchs at the LHC (From a Theorist's Point of View)

Andre Lessa

Homer L. Dodge Department of Physics and Astronomy University of Oklahoma

LAPTH Seminar - September 9th, 2010

- H. Baer, V. Barger, AL and X. Tata, JHEP 0909:063,2009.
- H. Baer, V. Barger, AL and X. Tata, JHEP 1006:102,2010.
- H. Baer, S. Kraml, AL, and S. Sekmen, JHEP 1002:055,2010.
- H. Baer, S. Kraml, AL, S. Sekmen and X. Tata, arXiv:1007.3897.

Outline

- What is SUSY?
- Where is SUSY?
- @ LHC7 Reach
- mSUGRA
- Non mSUGRA Models
- Conclusions

If you were lost in a desert island for the last 30 years, you may not have heard of SUSY:

- If you were lost in a desert island for the last 30 years, you may not have heard of SUSY:
 - SUSY is a space-time symmetry in 3 + 1 + 2* dimensions $(x^{\mu}, \theta_{1,2})$

- If you were lost in a desert island for the last 30 years, you may not have heard of SUSY:
 - SUSY is a space-time symmetry in 3 + 1 + 2* dimensions $(x^{\mu}, \theta_{1,2})$

 $R(\pi): |1/2; -1/2\rangle \rightarrow |1/2; +1/2\rangle$

- If you were lost in a desert island for the last 30 years, you may not have heard of SUSY:
 - SUSY is a space-time symmetry in 3 + 1 + 2* dimensions $(x^{\mu}, \theta_{1,2})$

 $R(\pi): |1/2; -1/2\rangle \rightarrow |1/2; +1/2\rangle$

Fermions & Bosons

 \odot Space-time symmetry \rightarrow universal \rightarrow applies to ALL particles

- \odot Space-time symmetry \rightarrow universal \rightarrow applies to ALL particles
- All masses and interactions are fixed by half the spectrum! (if SUSY is exact)

 $e, q, \nu \leftrightarrow \tilde{e}, \tilde{q}, \tilde{\nu}$ (Sleptons, Squarks and Sneutrinos)

 $g, W, B, h \leftrightarrow \tilde{g}, W_i, Z_i$ (Gluino, Charginos and Neutralinos)

- \odot Space-time symmetry \rightarrow universal \rightarrow applies to ALL particles
- All masses and interactions are fixed by half the spectrum! (if SUSY is exact)

 $e, q, \nu \leftrightarrow \tilde{e}, \tilde{q}, \tilde{\nu}$ (Sleptons, Squarks and Sneutrinos)

 $g, W, B, h \leftrightarrow \tilde{g}, W_i, Z_i$ (Gluino, Charginos and Neutralinos)

@ Good news! We have already measured half the spectrum

- \odot Space-time symmetry \rightarrow universal \rightarrow applies to ALL particles
- All masses and interactions are fixed by half the spectrum! (if SUSY is exact)
 - $e, q, \nu \leftrightarrow \tilde{e}, \tilde{q}, \tilde{\nu}$ (Sleptons, Squarks and Sneutrinos)
 - $g, W, B, h \leftrightarrow \tilde{g}, W_i, Z_i$ (Gluino, Charginos and Neutralinos)
- @ Good news! We have already measured half the spectrum
 - \Rightarrow All interactions are (\sim) known!

But SUSY must be Broken! (no scalar electron/selectron/e at 0.5 MeV)

- But SUSY must be Broken! (no scalar electron/selectron/e at 0.5 MeV)
- \odot No final model for SUSY breaking \rightarrow assume the MOST General case (particularize later)

- But SUSY must be broken! (no scalar electron/selectron/e at 0.5 MeV)
- \odot No final model for SUSY breaking \rightarrow assume the MOST General case (particularize later)
- Allowed SUSY Breaking terms:

m²ẽẽ, Aẽẽh_d, Mỹỹ

- But SUSY must be broken! (no scalar electron/selectron/e at 05 MeV)
- \odot No final model for SUSY breaking \rightarrow assume the MOST General case (particularize later)
- Allowed SUSY Breaking terms: m^2 ẽẽ, Aẽẽ h_d , M \tilde{g} \tilde{g}
- Breaking (soft) terms have the correct form!

- But SUSY must be broken! (no scalar electron/selectron/e at 05 MeV)
- lacktriangle No final model for SUSY breaking o assume the MOST General case (particularize later)
- Allowed SUSY Breaking terms: $m^2\tilde{e}\tilde{e}$, $A\tilde{e}\tilde{e}h_d$, $M\tilde{g}\tilde{g}$
- Breaking (soft) terms have the correct form! If m. A.M ~ 1 TeV:
 - ⇒ light matter fermions and gauge Bosons (SM)
 - ⇒ heavy matter scalar and Gauginos (MSSM)

Why We Like SUSY Maximal space-time symmetry in 4D Andre Lessa SUSY@LHC7 - LAPTH

- Maximal space-time symmetry in 4D
- "Explains" EWSB and stabilizes the EW scale

- Maximal space-time symmetry in 4D
- @ "Explains" EWSB and stabilizes the EW scale
- Respects the EW precision contraints

- Maximal space-time symmetry in 4D
- "Explains" EWSB and stabilizes the EW scale
- Respects the EW precision contraints
- Provides a dark matter candidate, light Higgs and gauge unification

- Maximal space-time symmetry in 4D
- "Explains" EWSB and stabilizes the EW scale
- Respects the EW precision contraints
- @ Provides a dark matter candidate, light Higgs and gauge unification
- Several models and interesting physics...

- Maximal space-time symmetry in 4D
- @ "Explains" EWSB and stabilizes the EW scale
- Respects the EW precision contraints
- Provides a dark matter candidate, light Higgs and gauge unification
- Several models and interesting physics...

...However it has over 100 (soft) parameters just in the MINIMAL (unconstrained) model!

Each model (or class of models) has distinct signatures and Backgrounds

- @ Each model (or class of models) has distinct signatures and Backgrounds
- General Approach:

- @ Each model (or class of models) has distinct signatures and Backgrounds
- General Approach:
- Look for regions in phase space where:
 - Signal is visible (5 > few
 - @ BG is not overwhelming (S/BG > confidence threshold)
 - Large statistics $(S > n\sigma\sqrt{BG})$

- Each model (or class of models) has distinct signatures and Backgrounds
- General Approach:
- Look for regions in phase space where:
 - Signal is visible (5 > few
 - @ BG is not overwhelming (S/BG > confidence threshold)
 - Large statistics $(S > n\sigma\sqrt{BG})$

- @ For the results presented here:

 - confidence threshold = 20 %
 - \circ n = 5 (5 sigma discovery)

- Each model (or class of models) has distinct signatures and Backgrounds
- General Approach:
- Look for regions in phase space where:
 - Signal is visible (5 > few
 - @ BG is not overwhelming (S/BG > confidence threshold)
 - Large statistics $(S > n\sigma\sqrt{BG})$
 - Standard SUSY channels:

 - OS, SS dileptons + jets
 - Trilepton
 - \circ jets + γ , ...

For the results presented here:

- - confidence threshold = 20 %
 - \circ n = 5 (5 sigma discovery)

SM Backgrounds

SUSY Signal

For LHC7 we can focus on strong cross-sections

- Some rough guides:
 - **3** Small luminosity \rightarrow signal needs to be produced strongly (\tilde{g}/\tilde{q})

- Some rough guides:
 - **Small luminosity** \rightarrow signal needs to be produced strongly (\tilde{g}/\tilde{q})
 - Require at least 100 SUSY events within I fB-1 of data

- Some rough guides:
 - **Small luminosity** \rightarrow signal needs to be produced strongly (\tilde{g}/\tilde{q})
 - Require at least 100 SUSY events within I fB⁻¹ of data

- Some rough guides:
 - **Small luminosity** \rightarrow signal needs to be produced strongly (\tilde{g}/\tilde{q})
 - Require at least 100 SUSY events within I fB⁻¹ of data

 $0.7 \pm 0.1 \; {
m TeV} \lesssim m_{
m ilde{g}} \lesssim 0.9 \pm 0.1 \; {
m TeV}$

10

MSUGRA For a more detailed analysis we need a specific model (or class of models).

MSUGRA

- For a more detailed analysis we need a specific model (or class of models).
- \odot If the soft terms are generated by gravitational interactions ightarrowuniversal Breaking

MSUGRA

- For a more detailed analysis we need a specific model (or class of models).
- $oldsymbol{\emptyset}$ If the soft terms are generated by gravitational interactions ightarrowuniversal Breaking
- **o** mSUGRA: $m_0, m_{1/2}, A_0, \tan \beta, sgn(\mu)$

- $oldsymbol{o}$ $m_0 oup$ scalar masses
- $oldsymbol{\circ} m_{1/2}
 ightarrow Gaugino$ masses

MSUGRA

- For a more detailed analysis we need a specific model (or class of models).
- If the soft terms are generated by gravitational interactions →
 universal breaking
- **o** mSUGRA: $m_0, m_{1/2}, A_0, \tan \beta, sgn(\mu)$

- $oldsymbol{o}$ $m_0
 ightarrow$ scalar masses
- $m{o}$ $m_{1/2}
 ightarrow$ Gaugino Masses

MSUGRA

- For a more detailed analysis we need a specific model (or class of models).
- \odot If the soft terms are generated by gravitational interactions \rightarrow universal breaking
- \odot mSUGRA: $m_0, m_{1/2}, A_0, \tan \beta, sgn(\mu)$

- $omega m_0
 ightarrow scalar masses$
- $m_{1/2}
 ightarrow {
 m Gaugino}$ Masses

 \rightarrow Should not be taken too seriously, since mSUGRA is just a "prototype" model

Early data results show excellent detector/MC agreement!

Early data results show excellent detector/MC agreement!

Early data results show excellent detector/MC agreement!

- @ B-tagging and

Early data results show excellent detector/MC agreement!

60 80 100 12 Μ_τ [GeV]

20 40

- **③** ₹_T,
- @ B-tagging and
- lepton ID should be available for early analysis!

Early data results show excellent detector/MC agreement!

80 100 12 M_τ [GeV]

- **③** ₹_T,
- @ B-tagging and
- @ lepton ID should Be available for early analysis!
- \odot More than 3 pb⁻¹ of data by now!

Search Channels

Full Analysis (optimized search):

- **⊘** $E_T > 100 1000 \text{ GeV}$
- $oldsymbol{n(jets)} \geq 2, 3, 4, 5 \text{ or } 6$
- o n(b) > 0, 1, 2 or 3
- \bullet $E_T(j_1) > 50 1000 \text{ GeV}$
- \bullet $E_T(i_2) > 50 500 \text{ GeV}$
- $o n(\ell) = 0, 1, 2, 3, OS, SS$ and inclusive channel: $n(\ell) \geq 0$
- **3** 10 GeV < $m(\ell^+\ell^-)$ < 75 GeV or $m(\ell^+\ell^-)$ > 105 GeV (for the OS, same flavor (SF) dileptons only)
- \circ transverse sphericity $S_T > 0.2$

Search Channels

Full Analysis (optimized search):

- **⊘** $E_T > 100 1000 \text{ GeV}$
- $oldsymbol{n(jets)} \geq 2, 3, 4, 5 \text{ or } 6$
- o n(b) > 0, 1, 2 or 3
- \bullet $E_T(j_1) > 50 1000 \text{ GeV}$
- \bullet $E_T(i_2) > 50 500 \text{ GeV}$
- $o n(\ell) = 0, 1, 2, 3, OS, SS$ and inclusive channel: $n(\ell) \geq 0$
- **3** 10 GeV < $m(\ell^+\ell^-)$ < 75 GeV or $m(\ell^+\ell^-)$ > 105 GeV (for the OS, same flavor (SF) dileptons only)
- \circ transverse sphericity $S_T > 0.2$

O Channel is chosen such that:

- Signal is visible $(S \ge \max[5, 5\sigma\sqrt{BG}, 0.2BG])$
- Maximizes $S/\sqrt{S+BG}$

Full Analysis results:

Full Analysis results:

650 GeV $\lesssim m_{\tilde{e}} \lesssim 1.1$ TeV

@ Full Analysis results:

650 GeV $\lesssim m_{\tilde{g}} \lesssim 1.1$ TeV

 \Rightarrow Agrees with estimated reach!

<□▶ <┛▶ <필▶ <필▶ 월급 ∽Q(

Disclaimer @ However: Results assume 0% systematic error for the BG!

Disclaimer

- @ However:
 - Results assume 0% systematic error for the BG!
 - LO results! (no k-factors included)

Disclaimer

- @ However:
 - Results assume 0% systematic error for the BG!
 - LO results! (no k-factors included)

Disclaimer

- # However:
 - Results assume 0% systematic error for the BG!
 - LO results! (no k-factors included)

- A proper reach analysis has to be ultimately done by the experimental groups:
 - Full detector simulation
 - O Data driven BG
 - Systematical error effects (NLO, PDFs...)

Which channels are relevant?

- Which channels are relevant?
 - Multi-jets $+ \not\!\! E_T$: largest cross-sections \to maximum reach

- Which channels are relevant?
 - Multi-jets $+ \not\!\! E_T$: largest cross-sections \to maximum reach
 - Complementary signals:

- Which channels are relevant?

 - Complementary signals:
 - Multi-b's

- Which channels are relevant?

 - Complementary signals:
 - Multi-b's
 - Multi-leptons

SPSla':

 $m_0 = 70$ GeV, $m_{1/2} = 250$ GeV, $A_0 = -300$ GeV, $\tan \beta = 10$

18

SPSla':

$$m_0 = 70 \; \text{GeV}, \; m_{1/2} = 250 \; \text{GeV}, \; A_0 = -300 \; \text{GeV}, \; an \beta = 10$$

$$m{\sigma}$$
 $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{ ilde{ ilde{7}}_1}}=98$ GeV, $m_{ ilde{ ilde{7}}_1}=108$ GeV

$$\bullet$$
 $\Omega h^2 = 0.11$, $\delta a_\mu = 38 \times 10^{-10}$, $BF(b \to s\gamma) = 2.6 \times 10^{-4}$

18

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=-300$ GeV, $aneta=10$

- $m{\vartheta}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{Z}_1}=98$ GeV, $m_{ ilde{ au}_1}=108$ GeV
- $\delta \Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 200$ GeV, (S = 909, BG = 460)

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=-300$ GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{ ilde{ ilde{7}}_1}}=98$ GeV, $m_{ ilde{ ilde{7}}_1}=108$ GeV
- $\delta \Omega h^2 = 0.11$, $\delta a_\mu = 38 \times 10^{-10}$, $BF(b \to s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not \! E_T > 200$ GeV, (S = 909, BG = 460)

@ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $\tan\beta=11$ (O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=-300$ GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{ ilde{ ilde{7}}_1}}=98$ GeV, $m_{ ilde{ ilde{7}}_1}=108$ GeV
- $\delta \Omega h^2 = 0.11$, $\delta a_\mu = 38 \times 10^{-10}$, $BF(b \to s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not \! E_T > 200$ GeV, (S = 909, BG = 460)

@ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $\tan\beta=11$ (O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

- $oldsymbol{\sigma}$ $m_{\widetilde{g}}=740$ GeV, $m_{\widetilde{q}}\sim650$ GeV, $m_{\widetilde{\gamma}_*}=122$ GeV, $m_{\widetilde{\tau}_1}=129$ GeV
- $\delta \Omega h^2 = 0.08, \ \delta a_\mu = 27 \times 10^{-10}, \ BF(b \to s \gamma) = 3.1 \times 10^{-4}$

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=-300$ GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{ ilde{ ilde{7}}_1}}=98$ GeV, $m_{ ilde{ ilde{7}}_1}=108$ GeV
- $\delta \Omega h^2 = 0.11$, $\delta a_\mu = 38 \times 10^{-10}$, $BF(b \to s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not \! E_T > 200$ GeV, (S = 909, BG = 460)

@ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $\tan\beta=11$ (O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

- $m{\vartheta}$ $m_{ ilde{g}}=740$ GeV, $m_{ ilde{q}}\sim650$ GeV, $m_{ ilde{\mathcal{T}}_1}=122$ GeV, $m_{ ilde{\mathcal{T}}_1}=129$ GeV
- $\Omega h^2 = 0.08$, $\delta a_{\mu} = 27 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not \! E_T > 300$ GeV, (S = 221, BG = 109)

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=$ -300 GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{ ilde{ ilde{7}}_1}}=98$ GeV, $m_{ ilde{ ilde{7}}_1}=108$ GeV
- $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not \! E_T > 200$ GeV, (S = 909, BG = 460)

@ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $\tan\beta=11$ (O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

- $m{\sigma}$ $m_{\widetilde{g}}=740$ GeV, $m_{\widetilde{q}}\sim 650$ GeV, $m_{\widetilde{7}_1}=122$ GeV, $m_{\widetilde{\tau}_1}=129$ GeV
- δ $\Omega h^2 = 0.08$, $\delta a_\mu = 27 \times 10^{-10}$, $BF(b \to s\gamma) = 3.1 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 300$ GeV, (S = 221, BG = 109)

omSUGRA Best Fit (FP):

$$m_0=2550$$
 GeV, $m_{1/2}=370$ GeV, $A_0=1730$ GeV, $aneta=51$

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=$ -300 GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{7}_1}=98$ GeV, $m_{ ilde{7}_1}=108$ GeV
- δ $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not \! E_T > 200$ GeV, (S = 909, BG = 460)

@ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $\tan \beta=11$ (O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

- $m{\vartheta}$ $m_{ ilde{g}}=740$ GeV, $m_{ ilde{q}}\sim650$ GeV, $m_{ ilde{\mathcal{T}}_1}=122$ GeV, $m_{ ilde{\mathcal{T}}_1}=129$ GeV
- $\Omega h^2 = 0.08$, $\delta a_{\mu} = 27 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 300$ GeV, (S = 221, BG = 109)

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; {
m GeV}, \; m_{1/2} = 370 \; {
m GeV}, \; A_0 = 1730 \; {
m GeV}, \; {
m tan} \; eta = 51$$

$$m{\sigma}$$
 $m_{ ilde{g}}=980$ GeV, $m_{ ilde{q}}\sim2500$ GeV, $m_{ ilde{Z}_1}=154$ GeV

SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=$ -300 GeV, $aneta=10$

$$m{\sigma}$$
 $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{7}_1}=98$ GeV, $m_{ ilde{7}_1}=108$ GeV

$$\delta$$
 $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$

• Visible at:
$$n(j) \ge 2$$
, $\not \! E_T > 200$ GeV, $(S = 909, BG = 460)$

@ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $\tan \beta=11$ (O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

- **3** $\Omega h^2 = 0.08$, $\delta a_{\mu} = 27 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 300$ GeV, (S = 221, BG = 109)

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; {
m GeV}, \; m_{1/2} = 370 \; {
m GeV}, \; A_0 = 1730 \; {
m GeV}, \; {
m tan} \; eta = 51$$

- $m_{\tilde{g}} = 980$ GeV, $m_{\tilde{q}} \sim 2500$ GeV, $m_{\tilde{Z}_1} = 154$ GeV
- Not visible!

Non mSUGRA Models How much of the previous results are model dependent?

SO(10) $oldsymbol{\circ}$ Gauge coupling unification ightarrow GUT at $\sim 10^{16}$ GeV

- lacktriangle Gauge coupling unification ightarrow GUT at $\sim 10^{16}$ GeV
- **3** Predicts right-handed neutrino $(\nu^c) \rightarrow$ natural see-saw mechanism

- lacktriangled Gauge coupling unification ightarrow GUT at $\sim 10^{16}$ GeV
- **©** Predicts right-handed neutrino $(\nu^c) \rightarrow \text{natural}$ see-saw mechanism
- @ Restores left-right symmetry

- $oldsymbol{\circ}$ Gauge coupling unification ightarrow GUT at $\sim 10^{16}$ GeV
- **©** Predicts right-handed neutrino $(\nu^c) o$ natural see-saw mechanism
- Restores left-right symmetry
- R-Parity is automatically conserved (in some models)

◆□▶ ◆両▶ ◆臺▶ ◆臺▶ 臺|章 夕Q♡

- $oldsymbol{\circ}$ Gauge coupling unification ightarrow GUT at $\sim 10^{16}$ GeV
- **©** Predicts right-handed neutrino $(\nu^c) o$ natural see-saw mechanism
- Restores left-right symmetry
- R-Parity is automatically conserved (in some models)
- O Viable leptogenesis scenarios...

All the matter content fits in one multiplet:

$$\Psi =
\begin{pmatrix}
0 & u^c & -u^c \\
0 & u^c & 0
\end{pmatrix}$$

$$\bigoplus \left(\begin{array}{c} d^c \\ d^c \\ d^c \\ e^- \end{array} \right)$$

$$\oplus \quad
u^{\mathsf{c}}$$

Minimal SO(IO)

All the matter content fits in one multiplet:

$$\Psi = \begin{pmatrix} 0 & u^c & -u^c & u & d \\ 0 & u^c & -u^c & u & d \\ 0 & u^c & u & d \\ 0 & 0 & e^+ \\ 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} d^c \\ d^c \\ d^c \\ e^- \\ \nu \end{pmatrix} \oplus \nu^c$$

Naturally has 2 weak Higgs doublets:

Minimal SO(IO)

All the matter content fits in one multiplet:

$$\Psi = \begin{pmatrix} 0 & u^c & -u^c & u & d \\ 0 & u^c & -u^c & u & d \\ 0 & u^c & u & d \\ 0 & 0 & e^+ \\ 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} d^c \\ d^c \\ d^c \\ e^- \\ \nu \end{pmatrix} \oplus \nu^c$$

Naturally has 2 weak Higgs doublets:

$$\begin{array}{rcl}
\mathbf{10} & = & \mathbf{5} & \oplus & \mathbf{\bar{5}} \\
\mathbf{H_a} & = & \begin{pmatrix} \xi_u \\ H_u \end{pmatrix} & \oplus & \begin{pmatrix} \bar{\xi}_d \\ H_d \end{pmatrix}
\end{array}$$

Minimal Yukawa coupling: $\mathcal{L}_{Yuk} = f \bar{\Psi} \Gamma_a \Psi H_a \Rightarrow f_t = f_b = f_\tau$

Model parameters: $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, \tan \beta, sign(\mu)$

- Model parameters: $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, \tan \beta, sign(\mu)$
- $oldsymbol{\circ}$ Unification is obtained at the $\lesssim 1\%$ level, if:

- $m{\emptyset}$ Model parameters: $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, aneta, sign(\mu)$
- $oldsymbol{\circ}$ Unification is obtained at the $\lesssim 1\%$ level, if:
 - omega $m_{16}\sim$ 3-15 TeV (heavy scalars)

- Model parameters: $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, \tan \beta, sign(\mu)$
- Unification is obtained at the $\lesssim 1\%$ level, if:
 - $m_{16} \sim 3-15 \text{ TeV} \text{ (heavy scalars)}$
 - $\sigma m_{1/2} \ll m_{16}$ (light gluino)

- Model parameters: $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, \tan \beta, sign(\mu)$
- Unification is obtained at the $\lesssim 1\%$ level, if:
 - σ $m_{16} \sim 3-15$ TeV (heavy scalars)
 - $m_{1/2} \ll m_{16}$ (light gluino)
 - $m_{10} \sim 1.2 m_{16}$ and $m_D \sim 0.5 m_{16}$ (EWSB)

- $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, \tan \beta, sign(\mu)$
- $oldsymbol{\circ}$ Unification is obtained at the $\lesssim 1\%$ level, if:
 - σ $m_{16} \sim 3$ -15 TeV (heavy scalars)
 - $\sigma m_{1/2} \ll m_{16}$ (light gluino)
 - omega $m_{10}\sim 1.2m_{16}$ and $m_D\sim 0.5m_{16}$ (EWSB)
 - $oldsymbol{\circ}$ $A_0\sim -2m_{16}$ and $aneta\sim 50$

- Model parameters: $m_{16}, m_{10}, \mathbf{M}_D, m_{1/2}, A_0, \tan \beta, sign(\mu)$
- Unification is obtained at the $\lesssim 1\%$ level, if:
 - $m_{16} \sim 3-15 \text{ TeV} \text{ (heavy scalars)}$
 - $m_{1/2} \ll m_{16}$ (light gluino)
 - $m_{10} \sim 1.2 m_{16}$ and $m_D \sim 0.5 m_{16}$ (EWSB)
 - \bullet $A_0 \sim -2m_{16}$ and $\tan \beta \sim 50$
- MCMC scan:

$$R = rac{\max[f_t, f_b, f_ au]}{\min[f_t, f_b, f_ au]}$$

Benchmark Point (DR3B): $m_{\widetilde{g}}=321$ GeV, $m_{\widetilde{W}_1}=115$ GeV,

 $m_{\widetilde{Z}_2}=114$ GeV, $m_{\widetilde{Z}_1}=47$ GeV,

 $m_{\tilde{t}_1}^{-2} = 2.4 \text{ TeV}, \ m_{\tilde{b}_1}^{-1} = 1.4 \text{ TeV}$

Benchmark Point (DR3B): $m_{\widetilde{g}}=321~{
m GeV},~m_{\widetilde{W}_1}=115~{
m GeV}, \ m_{\widetilde{Z}_2}=114~{
m GeV},~m_{\widetilde{Z}_1}=47~{
m GeV}, \ m_{\widetilde{t}_1}=2.4~{
m TeV},~m_{\widetilde{b}_1}=1.4~{
m TeV}$

Benchmark Point (DR3B): $m_{\widetilde{g}}=321~{
m GeV},~m_{\widetilde{W}_1}=115~{
m GeV}, \ m_{\widetilde{Z}_2}=114~{
m GeV},~m_{\widetilde{Z}_1}=47~{
m GeV}, \ m_{\widetilde{t}_1}=2.4~{
m TeV},~m_{\widetilde{b}_1}=1.4~{
m TeV}$

Benchmark Point (DR3B): $m_{\widetilde{g}}=321~{
m GeV},~m_{\widetilde{W}_1}=115~{
m GeV}, \ m_{\widetilde{Z}_2}=114~{
m GeV},~m_{\widetilde{Z}_1}=47~{
m GeV}, \ m_{\widetilde{t}_1}=2.4~{
m TeV},~m_{\widetilde{b}_1}=1.4~{
m TeV}$

DR3 Reach

 $m_{\widetilde{g}} \lesssim 650 \; {
m GeV}$

24

DR3 Reach

 $m_{ ilde{g}} \lesssim 650 \; {
m GeV}$

⇒ Once again agrees with estimated reach!

DR3 Reach

 $m_{ ilde{g}} \lesssim 650 \; {
m GeV}$

⇒ Can exclude models with unification up to 10%!

⇒ Once again agrees with estimated reach!

□▶ ◀圖▶ ◀臺▶ ◀臺▶ 필급 쒸익()

 \bullet Measuring Masses? (No $\not\in_T$ cuts, $n(b) \ge 4$)

$$\Rightarrow m(b,b) \leq m_{\tilde{g}} - m_{\widetilde{Z}_2}$$

$$\Rightarrow m(b,b) \leq m_{\tilde{g}} - m_{\tilde{Z}_1}$$

6 Measuring Masses? (No E_T cuts, $n(b) \ge 4$)

$$\Rightarrow m(b,b) \leq m_{\tilde{g}} - m_{\tilde{Z}_2}$$

$$\Rightarrow m(b,b) \leq m_{\tilde{g}} - m_{\tilde{Z}_1}$$

- \bullet DR3: motivated by high scale physics (M_{GUT})
 - \bullet But $m_{\tilde{t},\tilde{b}} \sim 1.5$ 4 TeV \rightarrow large fine-tunning to stabilize the EW scale

- \bullet DR3: motivated by high scale physics (M_{GUT})
 - $m{\circ}$ But $m_{ ilde{t}, ilde{b}}\sim$ 1.5 4 TeV ightarrow large fine-tunning to stabilize the EW scale

 ESUSY: motivated by low energy physics and naturalness

- \odot DR3: motivated by high scale physics (M_{GUT})
 - $m{o}$ But $m_{\tilde{t},\tilde{b}} \sim 1.5$ 4 TeV ightarrow large fine-tunning to stabilize the EW scale

- ESUSY: motivated by low energy physics and naturalness
 - "light" third generation scalars and charginos
 - ⇒ preserves naturalness

- \odot DR3: motivated by high scale physics (M_{GUT})
 - $m{o}$ But $m_{\tilde{t},\tilde{b}} \sim 1.5$ 4 TeV ightarrow large fine-tunning to stabilize the EW scale

- ESUSY: motivated by low energy physics and naturalness
 - o "light" third generation scalars and charginos
 - \Rightarrow preserves naturalness
 - heavy lst/2nd generation scalars
 - ⇒ satisfies flavor and CP constraints

- \odot DR3: motivated by high scale physics (M_{GUT})
 - $m{o}$ But $m_{\tilde{t},\tilde{b}} \sim 1.5$ 4 TeV ightarrow large fine-tunning to stabilize the EW scale

- ESUSY: motivated by low energy physics and naturalness
 - "light" third generation scalars and charginos
 preserves naturalness
 - heavy lst/2nd generation scalars
 ⇒ satisfies flavor and CP constraints
 - Unlike DR3, can have heavy gluinos!

@ At the weak scale:

$$egin{array}{cccc} m_{\widetilde{t},\widetilde{ au},\widetilde{b}} &\lesssim & 1 ext{ TeV} \ m_{\widetilde{B},\widetilde{W}} &\lesssim & 1 ext{ TeV} \ m_{\widetilde{q},\widetilde{l}}(1,2) &\gtrsim & 10 ext{-}100 ext{ TeV} \ \end{array}$$

ESUSY - Phenomenology

- Some signal topologies:
- Light Gluino:

 \tilde{g} t

ESUSY - Phenomenology

- Some signal topologies:
- Light Gluino:
- Heavy Gluino:

 \tilde{g} t

 \widetilde{g} b

$$ilde{t}_1$$
 $ilde{ ilde{z}_1}$ $ilde{ ilde{z}_2}$

ESUSY - Phenomenology

- Some signal topologies:
- Light Gluino:
- · Heavy Gluino:

 \tilde{g} t

Multi-b jets

 $ot\!\!\!/_T + leptons$

Soft jets and/or leptons (if $m_{\widetilde{t}_1} \sim m_{\widetilde{\gamma}_1}$)

ESUSY - Phenomenology

- Benchmark points:
 - @ ESI:

$$m_{\widetilde{g}}=5$$
24 GeV, $m_{\widetilde{t}_1}=6$ 56 GeV, $m_{\widetilde{Z}_1}=6$ 9 GeV, $m_{\widetilde{t}_2,\widetilde{b}_i,\widetilde{ au}_i}\sim 1-2$ TeV

@ ES2:

 $m_{\widetilde{g}}=$ 2.4 TeV, $m_{\widetilde{t}_1}=$ 612 GeV, $m_{\widetilde{Z}_1}=$ 441 GeV, $m_{\widetilde{t}_2,\widetilde{b}_i,\widetilde{ au}_i}\sim 0.8-1.4$ TeV

ESUSY - Phenomenology

- Benchmark points:
 - @ ESI:

$$m_{\widetilde{g}}=5$$
24 GeV, $m_{\widetilde{t}_1}=6$ 56 GeV, $m_{\widetilde{Z}_1}=6$ 9 GeV, $m_{\widetilde{t}_2,\widetilde{b}_i,\widetilde{ au}_i}\sim 1-2$ TeV

@ ES2:

$$m_{\widetilde{g}}=$$
 2.4 TeV, $m_{\widetilde{t}_1}=$ 612 GeV, $m_{\widetilde{Z}_1}=$ 441 GeV, $m_{\widetilde{t}_2,\widetilde{b}_i,\widetilde{ au}_i}\sim 0.8-1.4$ TeV

@ LHC7 signal:

Conclusions \odot LHC7 already has 3.5 pB $^{-1}$ of data!

- \odot LHC7 already has 3.5 pB $^{-1}$ of data!
- Several interesting cases can be excluded:

- \odot LHC7 already has 3.5 pb $^{-1}$ of data!
- Several interesting cases can be excluded:
 - Low fine-tunning, Best fits, SO(IO) Yukawa unified

- © LHC7 already has 3.5 pB^{-1} of data!
- Several interesting cases can be excluded:
 - Low fine-tunning, Best fits, SO(10) Yukawa unified
- The first signal should appear in a hadronic channel (jets + $\not\!\!E_T$ or b-jets + $\not\!\!E_T$)

- \odot LHC7 already has 3.5 pB $^{-1}$ Of data!
- Several interesting cases can be excluded:
 - Low fine-tunning, Best fits, SO(IO) Yukawa unified
- The first signal should appear in a hadronic channel (jets + E_T)
- Complementary multi-lepton and multi-B channels
 will give a hint of the underlying model

- \odot LHC7 already has 3.5 pb $^{-1}$ of data!
- Several interesting cases can be excluded:
 - Low fine-tunning, Best fits, SO(IO) Yukawa unified
- Complementary multi-lepton and multi-B channels
 will give a hint of the underlying model
- \bullet If we are lucky, several new physics mass scales will be inferred from data (mass edges, $M_{\rm eff}$, $m_{T2\cdots}$)

- @ For mSUGRA:
 - A large portion of parameter space should be probed even in the first run:

650 GeV $\lesssim m_{\tilde{e}} \lesssim 1.1$ TeV

- @ For MSUGRA:
 - A large portion of parameter space should be probed even in the first run:

650 GeV
$$\lesssim m_{ ilde{g}} \lesssim 1.1$$
 TeV

 \Rightarrow Doubles the current (2 fb⁻¹) CDF/DO Bounds!

- For MSUGRA:
 - A large portion of parameter space should be probed even in the first run:

650 GeV
$$\lesssim m_{\tilde{g}} \lesssim 1.1$$
 TeV

- \Rightarrow Doubles the current (2 fb⁻¹) CDF/DO bounds!
- Several DM consistent scenarios can be excluded (except for FP/HB)

- For MSUGRA:
 - A large portion of parameter space should be probed even in the first run:

650 GeV
$$\lesssim m_{ ilde{g}} \lesssim 1.1$$
 TeV

- \Rightarrow Doubles the current (2 fb⁻¹) CDF/DO bounds!
- Several DM consistent scenarios can be excluded (except for FP/HB)
- Non-mSUGRA scenarios:

For MSUGRA:

A large portion of parameter space should be probed even in the first run:

650 GeV $\lesssim m_{\tilde{e}} \lesssim 1.1 \text{ TeV}$

- \Rightarrow Doubles the current (2 fb⁻¹) CDF/DO bounds!
- Several DM consistent scenarios can be excluded (except for FP/HB)
- Non-mSUGRA scenarios:
 - Can be more challenging: multi b-jets, monojets, soft #T spectrum

For MSUGRA:

A large portion of parameter space should be probed even in the first run:

650 GeV
$$\lesssim m_{\widetilde{g}} \lesssim 1.1$$
 TeV

- \Rightarrow Doubles the current (2 fb⁻¹) CDF/DO bounds!
- Several DM consistent scenarios can be excluded (except for FP/HB)
- Non-mSUGRA scenarios:
 - Can be more challenging: multi b-jets, monojets, soft #T spectrum

Thanks!

Simulation Details

Background Simulation: AlpGen (MLM matching) + Pythia

	Cross	number of
SM process	section	events
QCD: 2, 3 and 4 jets	$3.0 imes 10^9$ fb	26M
$t\overline{t}$: $t\overline{t}$ + 0, 1 and 2 jets	$1.6 imes 10^5$ fb	5M
$bar{b}$: $bar{b}$ $+$ 0, 1 and 2 jets	8.8×10^7 fb	91M
$Z+$ jets: $Z/\gamma(o lar l, uar u)+0$, 1, 2 and 3 jets	8.6×10^6 fb	13M
$W+$ jets: $W^{\pm}(\rightarrow l \nu)+$ 0, 1, 2 and 3 jets	1.8×10^7 fb	19M
$Z+tar{t}$: $Z/\gamma(o lar{l}, uar{ u})+tar{t}+0$, 1 and 2 jets	53 fb	0.6M
$Z+bar{b}$: $Z/\gamma(o lar{l}, uar{ u})+bar{b}+0$, 1 and 2 jets	$2.6 \times 10^3 \text{ fb}$	0.3M
$W+bar{b}\colonW^\pm(o l u)+bar{b}+0$, 1 and 2 jets	6.4×10^3 fb	9M
$W+t\overline{t}$: $W^{\pm}(\rightarrow l \nu)+t\overline{t}+0$, 1 and 2 jets	1.8×10^2 fb	9M
$W+tb$: $W^{\pm}(\rightarrow l\nu)+\bar{t}b(t\bar{b})$	6.8×10^2 fb	0.025M
tītī	0.6 fb	1M
tībb	1.0×10^2 fb	0.2M
$bar{b}bar{b}$	$1.1 imes 10^4 \; fb$	0.07M
WW: $W^{\pm}(\rightarrow l\nu) + W^{\pm}(\rightarrow l\nu)$	$3.0 \times 10^3 \text{ fb}$	0.005M
WZ: $W^{\pm}(\rightarrow l\nu) + Z(\rightarrow all)$	$3.4 \times 10^3 \text{ fb}$	0.009M
$ZZ: Z(\rightarrow all) + Z(\rightarrow all)$	$4.0 imes 10^3 ext{ fb}$	0.02M

< □ ▶ < 圖 ▶ ∢ 필 ▶ ◆ 필 ▶ · 필 | = · ∽ 익 ○

Simulation Details

- Signal Simulation:
 - \bullet Isajet 7.79 (all 2 \rightarrow 2 susy processes)
- Detector Simulation:
 - Toy detector with
 - Energy smearing
 - b-tag efficiency (60 %) and mistagging
 - Cone jet algorithm
- Luminosity:

- @ But...
 - \bullet $\not\!\!E_T$ has just been measured at low E_T events
 - \bullet Fake $\not\!\!E_T$ grows with $\sum E_T$
 - $oldsymbol{\circ}$ SUSY searches usually require $otin _T\sim 100-500 \ {
 m GeV}$

- @ But...
 - \bullet $\not\!E_T$ has just been measured at low E_T events
 - Fake

 F_T Grows with

 F_T
 - \odot SUSY searches usually require $E_T\sim 100-500$ GeV
- 3 Just in case, what can be done without $\not\!\!E_T$?
 - \bullet Multi- μ channels (clean signal)
 - Dijet channel (α_{RTS})
 - Multi-lepton $(e + \mu)$, if electron ID is reliable

35

- @ But...
 - \bullet $\not\!\!E_T$ has just been measured at low E_T events
 - @ Fake E_T grows with $\sum E_T$
 - $oldsymbol{\circ}$ SUSY searches usually require $otin _T \sim 100-500 \ {
 m GeV}$
- \odot Just in case, what can be done without \not E_T?
 - ullet Multi- μ channels (clean signal)
 - \bullet Dijet channel (α_{RTS})
 - Multi-lepton $(e + \mu)$, if electron ID is reliable

- @ But...
 - \bullet $\not\!\!E_T$ has just been measured at low E_T events
 - @ Fake E_T grows with $\sum E_T$
 - $oldsymbol{\circ}$ SUSY searches usually require $otin _T\sim 100-500$ GeV
- \odot Just in case, what can be done without $\not\!\!E_T$?
 - \bullet Multi- μ channels (clean signal)
 - \bullet Dijet channel (α_{RTS})
 - Multi-lepton $(e + \mu)$, if electron ID is reliable

- $oldsymbol{\circ}$ At low $m_0 \ (m_{ ilde{q}} \sim m_{ ilde{g}})$ ightarrow dijet channel
- $m{\odot}$ At "high" $m_0~(m_{ ilde{q}}\gtrsim m_{ ilde{g}}) \
 ightarrow {\sf OS/SF}$ channel

- lacktriangledown At low $m_0 \ (m_{ ilde{q}} \sim m_{ ilde{g}})$ ightarrow dijet channel
- $m{\varnothing}$ At "high" $m_0~(m_{ ilde{q}}\gtrsim m_{ ilde{g}}) \
 ightarrow {\sf OS/SF}$ channel

for 0.33 fb^{-1} :

 $500~{
m GeV} \lesssim m_{\widetilde{g}} \lesssim 650~{
m GeV}$

- lacktriangledown At low $m_0 \ (m_{ ilde{q}} \sim m_{ ilde{g}})$ ightarrow dijet channel
- $m{\mathfrak{D}}$ At "high" $m_0~(m_{\widetilde{q}} \gtrsim m_{\widetilde{g}}) \
 ightarrow \mathsf{OS/SF}$ channel

for 0.33 fb^{-1} :

500 GeV $\lesssim m_{\tilde{g}} \lesssim$ 650 GeV

 \rightarrow Already competitive with Tevatron Bounds! $(m_{\tilde{E}} \gtrsim 300 - 400 \text{ GeV})$

MSUGRA Reach Some Benchmark points:

- Some Benchmark points:
- SPSla': $m_0 = 70$ GeV, $m_{1/2} = 250$ GeV, $A_0 = -300$ GeV, $\tan \beta = 10$

- Some Benchmark points:
- SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=-300$ GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{\mathcal{T}}_1}=98$ GeV, $m_{ ilde{\mathcal{T}}_1}=108$ GeV
- δ $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$

- Some Benchmark points:
- SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=$ -300 GeV, $aneta=10$

- $m_{\widetilde{g}}=608$ GeV, $m_{\widetilde{q}}\sim550$ GeV, $m_{\widetilde{\tau}_1}=98$ GeV, $m_{\widetilde{\tau}_1}=108$ GeV
- δ $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 200$ GeV, (S = 909, BG = 460)

- Some Benchmark points:
- SP.Sla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=$ -300 GeV, $aneta=10$

- $m_{\widetilde{g}}=608$ GeV, $m_{\widetilde{q}}\sim550$ GeV, $m_{\widetilde{\tau}_1}=98$ GeV, $m_{\widetilde{\tau}_1}=108$ GeV
- \bullet $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 200$ GeV, (S = 909, BG = 460)
- MSUGRA Best Fit:

$$m_0 = 60 \text{ GeV}, \ m_{1/2} = 310 \text{ GeV}, \ A_0 = 130 \text{ GeV}, \ \tan \beta = 11$$

O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)

- Some Benchmark points:
- SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=$ -300 GeV, $aneta=10$

- $m{\sigma}$ $m_{ ilde{g}}=608$ GeV, $m_{ ilde{q}}\sim550$ GeV, $m_{ ilde{7}_1}=98$ GeV, $m_{ ilde{ ilde{7}}_1}=108$ GeV
- \bullet $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 200$ GeV, (S = 909, BG = 460)
- MSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $an eta=11$

- O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)
 - $m{\varpi}$ $m_{\widetilde{g}}=740$ GeV, $m_{\widetilde{q}}\sim650$ GeV, $m_{\widetilde{z}_1}=122$ GeV, $m_{\widetilde{ au}_1}=129$ GeV
 - $\Omega h^2 = 0.08$, $\delta a_{\mu} = 27 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$

- Some Benchmark points:
- SPSla':

$$m_0=70$$
 GeV, $m_{1/2}=250$ GeV, $A_0=-300$ GeV, $aneta=10$

- $m{\varpi}$ $m_{\widetilde{g}}=608$ GeV, $m_{\widetilde{q}}\sim550$ GeV, $m_{\widetilde{7}_*}=98$ GeV, $m_{\widetilde{7}_1}=108$ GeV
- δ $\Omega h^2 = 0.11$, $\delta a_{\mu} = 38 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 2.6 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 200$ GeV, (S = 909, BG = 460)
- @ mSUGRA Best Fit:

$$m_0=60$$
 GeV, $m_{1/2}=310$ GeV, $A_0=130$ GeV, $aneta=11$

- O. Buchmueller et al., Eur.Phys.J.C64:391-415,2009)
 - $m{\varpi}$ $m_{\widetilde{g}}=740$ GeV, $m_{\widetilde{q}}\sim650$ GeV, $m_{\widetilde{z}_1}=122$ GeV, $m_{\widetilde{ au}_1}=129$ GeV
 - **3** $\Omega h^2 = 0.08$, $\delta a_\mu = 27 \times 10^{-10}$, $BF(b \to s\gamma) = 3.1 \times 10^{-4}$
 - **◊ Visible at:** $n(j) \ge 2$, $\not\!\!E_T > 300$ **GeV**, (S = 221, BG = 109)

MSUGRA Best Fit (FP): $m_0 = 2550 \; \text{GeV}, \; m_{1/2} = 370 \; \text{GeV}, \; A_0 = 1730 \; \text{GeV}, \; an eta = 51$

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; \text{GeV}, \; m_{1/2} = 370 \; \text{GeV}, \; A_0 = 1730 \; \text{GeV}, \; an eta = 51$$

$$m{\sigma}$$
 $m_{ ilde{g}}=980$ GeV, $m_{ ilde{q}}\sim2500$ GeV, $m_{ ilde{Z}_1}=154$ GeV

$$m{\vartheta}$$
 $\Omega h^2=4.4$, $\delta a_\mu=3 imes 10^{-10}$, $BF(b o s\gamma)=3.1 imes 10^{-4}$

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; {
m GeV}, \; m_{1/2} = 370 \; {
m GeV}, \; A_0 = 1730 \; {
m GeV}, \; {
m tan} \; eta = 51$$

- **3** $\Omega h^2 = 4.4$, $\delta a_{\mu} = 3 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Not visible!

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; {
m GeV}, \; m_{1/2} = 370 \; {
m GeV}, \; A_0 = 1730 \; {
m GeV}, \; {
m tan} \; eta = 51$$

- $m_{\widetilde{g}} = 980$ GeV, $m_{\widetilde{q}} \sim 2500$ GeV, $m_{\widetilde{Z}_*} = 154$ GeV
- $\Omega h^2 = 4.4$, $\delta a_{\mu} = 3 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Not visible!
- NUHMI Best Fit:

 $m_0 = 150 \; {
m GeV}, \; m_{1/2} = 270 \; {
m GeV}, \; m_H = 1095 \; {
m GeV}, \; A_0 = -1300 \; {
m$ GeV, $\tan \beta = 11$

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; {
m GeV}, \; m_{1/2} = 370 \; {
m GeV}, \; A_0 = 1730 \; {
m GeV}, \; {
m tan} \; eta = 51$$

- $m{\emptyset}$ $m_{\widetilde{g}}=980$ GeV, $m_{\widetilde{q}}\sim2500$ GeV, $m_{\widetilde{Z}_s}=154$ GeV
- $\Omega h^2 = 4.4$, $\delta a_{\mu} = 3 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Not visible!

NUHMI Best Fit:

$$m_0=150$$
 GeV, $m_{1/2}=270$ GeV, $m_H=1095$ GeV, $A_0=$ -1300 GeV, $\tan\beta=11$

- $m{\emptyset}$ $m_{ ilde{g}}=658$ GeV, $m_{ ilde{q}}\sim600$ GeV, $m_{ ilde{z}_1}=110$ GeV
- $\delta \Omega h^2 = 0.05$, $\delta a_\mu = 33 \times 10^{-10}$, $BF(b \to s\gamma) = 3.9 \times 10^{-4}$

MSUGRA Best Fit (FP):

$$m_0 = 2550 \; {
m GeV}, \; m_{1/2} = 370 \; {
m GeV}, \; A_0 = 1730 \; {
m GeV}, \; {
m tan} \; eta = 51$$

- $m_{\widetilde{g}}=980$ GeV, $m_{\widetilde{q}}\sim2500$ GeV, $m_{\widetilde{Z}_1}=154$ GeV
- $\Omega h^2 = 4.4$, $\delta a_{\mu} = 3 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.1 \times 10^{-4}$
- Not visible!

NUHMI Best Fit:

$$m_0=150$$
 GeV, $m_{1/2}=270$ GeV, $m_H=1095$ GeV, $A_0=$ -1300 GeV, $\tan\beta=11$

- $m{\phi}$ $m_{ ilde{g}}=658$ GeV, $m_{ ilde{q}}\sim600$ GeV, $m_{ ilde{Z}_1}=110$ GeV
- δ $\Omega h^2 = 0.05$, $\delta a_{\mu} = 33 \times 10^{-10}$, $BF(b \rightarrow s\gamma) = 3.9 \times 10^{-4}$
- Visible at: $n(j) \ge 2$, $\not\!\!E_T > 300$ GeV, (S = 465, BG = 124)

- Most likely LHC7 will not be able to discover a light SM Higgs
 - $m_h \lesssim 150 \text{ GeV} \rightarrow h \rightarrow b\bar{b} \text{ (HUGE Background)}$

- Most likely LHC7 will not be able to discover a light SM Higgs
 - $m_h \le 150 \text{ GeV} \rightarrow h \rightarrow b\bar{b} \text{ (HUGE Background)}$
- However... if h is produced in susy cascade decays:

 Most likely LHC7 will not be able to discover a light SM Higgs

$$m_h \lesssim 150 \text{ GeV} \rightarrow h \rightarrow b\bar{b} \text{ (HUGE Background)}$$

However... if h is produced in susy cascade decays:

$$BF(\widetilde{Z}_2 \to \widetilde{Z}_1 + h) = 80 \%$$

 Most likely LHC7 will not be able to discover a light SM Higgs

$$m_h \lesssim 150 \text{ GeV} \rightarrow h \rightarrow b\bar{b} \text{ (HUGE Background)}$$

However... if h is produced in susy cascade decays:

$$BF(\widetilde{Z}_2 \to \widetilde{Z}_1 + h) = 80 \%$$

⇒ Hope?