"Physics of the B-Factories": Progress since the KEK meeting

Bruce Yabsley

PBF Book Gen. Eds / Belle / University of Sydney High Energy Physics group
"Physics of the B-Factories",
3rd Workshop, Mainz 1st October 2010

Outline

(1) Previous meeting ...
(2) Hypernews
(3) Section editors

4 Standalone template
(5) Full template
(6) SVN
(7) Content

The previous meeting: KEK, May 2010

Hypernews: the preferred means of communication

Category: BFLB Organization
HyperNews Testing
Category: BFactory Legacy Book
Category: HyperNews

This site runs SLAC HyperNews version 1.11 -slac-xx, derived from the original HyperNews

Hypernews: the preferred means of communication

Hypernews: the preferred means of communication

New Membership page for BFLE HyperNews at hypemews.slac.stanford.edu
Member: homer (logout)

This page describes how to register as a new member of the BFLB HyperNews at hypernews.slac.stanford.edu HyperNews. Once you are a member, this can be used to access all forums at this site.

- To register as a new member, first make up a User ID and enter it immediately below. Make it something that you can remember and easily type - it may be a "nickname". Then fill in the rest of the form. You should provide a Name since it is used to identify you in messages You must provide a new password since it protects you from unauthorized use of your User ID. Finally, click on the Register bution.

User ID (nickname, no spaces, no '@', case sensitive):
homer

Email and Subscription Options
BFLB HyperNews at hypernews.slac.stanford. edu will send you email each time you update your membership intormation. BFLB HyperNews at hypernews.slac.stanford.edu will also send you new postings via email it you "subscribe" to forums. A full internet Email address is required for this purpose. It you get a new email address; you can update your HyperNews email address here.

Email Address: (example: jdoe@my.home.net, case sensitive)
 (Primary)
de my Email Address:
\square Do not show my Email address in messages or member lists.

The CZAR will be Soeren PRELL with Charlotte and Homer as backups.

Hypernews: the preferred means of communication

Subscribe to:
(-) Only what I specify in each forum
O Nothing - Please UNSUBSCRIBE me from all torums at BFLB HyperNews at hypernews. slac. stanford. edu.

Personal Data

Flease tell us about yourself. Your Name is used to identify you in your messages; otherwise your Email address or User ID is used. You can leave

Name (example: John Doe):

Personal Home Page URL (example: http://my.home.net/):

Reason for This New Account: (example: referral, affiliation, etc) [Note: the account is moderated on this site.]

Hypernews: the preferred means of communication

Hypernews: New member Application Form:pg 3

Remember me:
(BFLB HyperNews at hypernews.slac.stantord. edu can use "cookies" to let your browser remember your login using your User ID and Password tor some period of time. You must also enable cookies in your browser)
ONot at all.
(-) Untill quit my browser.

Now click "Register" to add new membership...

Hypernews: the preferred means of communication

Example Confirmation Message:

$$
\text { Date: Thu, } 29 \text { Oct } 2010 \text { 12:29:57-0700 }
$$

From: Soeren Prell prell@iastate.edu
To: hneal@in2p3.fr
Subject: New account 'hntest' is activated (BFLB HyperNews at hypernews.slac.stanford.edu)

Congratulations! Your account 'hntest' has been approved and activated.
You can change your membership info by visiting the URL:
http://hypernews.slac.stanford.edu/HyperNews/BFLB/SECURED/editmember.pl?hntest

Write to prell@iastate.edu for assistance.
Note: Your User ID is "hntest",
but you can also use your Email address: "hneal@in2p3.fr".

Section editors

Section editors

C.The Results and their Interpretation				
13	The CKM matrix and the Kobayashi Maskawa mechanism			
14	\boldsymbol{B}-Physics			
14.1	V_{ub} and V_{cb}	Vera Luth	Christoph Schwanda	
		Paolo Gambino (Vcb)	Zoltan Ligeti (Vub)	
		Frank Tackmann (Vub)		
14.2	$\mathrm{V}_{\text {td }}$ and $\mathrm{V}_{\text {ts }}$	Kevin Flood	Tobias Hurth	
14.3	Hadronic B to charm decays	Martin Beneke	Richard Kass	
14.4	Charmless B decays	Martin Beneke	Fergus Wilson	
14.5	Mixing and EPR correlations	Soeren Prell	Bruce Yabsley	
$14.6 \varphi_{1}$ or β		Ikaros Bigi	Yoshihide Sakai	
		Owen Long		
14.7	ϕ_{2} or α	Tagir Aushev	Yury Kolomensky	
		Ikaros Bigi		
	$14.8 \phi^{3}$ or γ		Ikaros Bigi	Karim Trabelsi
			Fernando Martinez-Vidal	
14.9	CPT violation	Soeren Prell	Bruce Yabsley	
14.10	Radiative and electroweak penguin decays	Tobias Hurth	Mikihiko Nakao	
		Steve Playfer		
14.11	Leptonic Decays	Toru Ijijima	Steve Robertson	
14.12	Rare, exotic and forbidden decays	Youngioon Kwon	Steve Robertson	
14.13	Baryonic B decays	Roland Waldi	M.-Z. Wang	

Section editors

15	Quarkonium Physics		
15.1	Conventional Charmonium	Nora Brambilla	Riccardo Faccini
		Pasha Pakhlov	
15.2 Exotic Charmonium like states		Riccardo Faccini Eric Swanson	Steve Olsen
15.3	Bottomonium	Nora Brambilla	Roberto Mussa
		Stephen Sekula	
16	Charm Physics		
16.1	Charm meson decays	Jolanta Brodzicka	Antimo Palano
		Svejtlana Fajfer	
16.2 D-mixing and CP Violation		Bostjan Golob	Ikaros Bigi
		Brian Meadows	
16.3	Charm meson spectroscopy	Jolanta Brodzicka	Svejtlana Fajfer
		Antimo Palano	
16.4	Charm baryon spectroscopy and decays	Matthew Charles	Roman Mizuk
17	Tau physics	Hisaki Hayashii	Mike Roney
		Antonio Pich	
18	QED \& initial state radiation studies	Fabio Anulli	Galina Pakhlova
19	Two-photon Physics	Sadaharu Uehara	
20	Y(5S) Physics	Kay Kinoshita	

Section editors

21	QCD related Physics		
21.1	Fragmentation	Fabio Anulli Shunzo Kumano	Ralf Seidl
21.2	Pentaquark Searches	Bill Dunwoodie Adam Szczepaniak	Bruce Yabsley
22	Global Interpretation		
22.1	Global CKM Fits	Marcella Bona	Gerald Eigen
22.1	Global CKM Fits	Cecilia Tarantino	Ryosuke Itoh
22.2	Benchmark "new physics" models	Emi Kou	

The standalone template

Contents

The facilities
 1

1 The B-factories 1
2 The detectors and collaborations 1
3 Datataking and Monte Carlo production summary 1

Tools and methods

4 Vertexing . 1
5 Multivariate discriminants 1
5.1 Analysis optimization 1
5.2 Particle identification 1
5.3 Flavor tagging 1
5.4 Background discrimination 1
$6 B$-meson reconstruction 1
7 Mixing and time-dependent analyses 1
8 Maximum likelihood fitting 1
9 Angular analysis 1
10 Dalitz analysis 1
11 Blind analysis . 1
12 Systematic error estimation 1

The results and their interpretation
13 The CKM matrix and the Kobayashi-Maskawa1

mechanism 1$14 B$-physics
1$14.1 \quad V_{\mathrm{ub}}$ and V_{cb}
110 V …」 V1
22.1 Global CKM fits 1
22.2 Benchmark "new physics" models 1

15.1 Conventional charmonium

Editors:

Riccardo Faccini (BABAR)
Pasha Pakhlov (Belle)
Nora Brambilla (theory)
The headings above were produced with the commands $\backslash \mathrm{pbfshowsection}\{\mathrm{CCBAR}\}$ and
\pbfshoweditors\{Riccardo Faccini\}
\{Pasha Pakhlov\}
\{Nora Brambilla\}
respectively for the BABAR, Belle, and theory editors of the section. They should be replaced with the label and editors' names of your own sectional unit. (A command $\backslash p b f s h o w c h a p t e r ~ a l s o ~ e x i s t s) ~ E v e n t u a l l y ~ t h e s e ~ w i l l ~ s e t$. chapter and section counters to ensure proper labelling of subsections and so on, but currently they do not do so.

This template

This is the template for standalone writing and compilation of contributions to the book "Physics of the $B-{ }^{\circ}$

The standalone template

which should be sufficient to compile PDF output from the source, resolving all references, except for cases where certain errors have corrupted $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ files on a previous run. If this occurs, try
rm pbf-standalone.aux
./pbf-make
For contributors' convenience this template includes rules and examples on the following subjects:

- Citations
- Bibliographies
- Tables
- Figures
- Notational changes
- Sectioning, labels, and cross-references

Citations

The basic citation of a Belle paper, given by the command \citepBelle\{Seuster:2005tr\} and so on, looks like this: physics studies include charm fragmentation (Seuster, 2006) and B-meson branchings to final states including charmedstrange mesons (Joshi, 2010). Note that the "et al" is suppressed in the citation, and the label in the bibliography, to avoid tedium; of course it appears in the bibliography in the authorlist itself. If the authorname needs to be incorporated into the grammar of the sentence, then the alternative form \citeBelle\{Sahu:1996me\} is available: important technical measurements were made by Sahu (1996).

[^0]customized format where a label resembling the standard citation is set off from the bibliographic entry, to make the (long!) list of papers easier to search. So, the theory work previously mentioned (Bigi and Sanda, 2000) has a label "Bigi and Sanda 2000:" followed by a newline, in the bibliography.

Each bibliography is constructed from its own file, included in this distribution: pbf-bib-babar.bib, pbf-bib-belle.bib, and pbf-bib-other.bib. Each has been constructed from SPIRES output in BibTeX format. The BABAR and Belle files should be reasonably complete, but will of course need to be updated over time: contributors should make updates at need. (If the instructions in the header are followed, there should be no ambiguity about names.) The "other" papers bibliography is almost empty at present; in the full version on SVN it will evolve rapidly, with almost every contribution; for this standalone code, only occasional updates will be made.

Note that the title of the other-papers bibliography is not coming out as requested, due to some multibib feature: this will be fixed in a future update. Other known problems or omissions, to be fixed in future releases, include

- detail of citation of arXiv-only papers;
- details of the display of added notes in . bib files, which may be necessary for some references;
- construction of an index;
- active references \rightarrow URLs in the bibliography (and active links within the document itself).

The standalone template

Table 1. Example of a table summarizing quantities from more than one paper: adapted from Vasseur (2008). Measurements of $C P$ parameters, branching fractions, and fractions of longitudinal polarization in the $B \rightarrow \rho \rho$ modes.

	BABAR	Belle	Average
$S_{\rho^{+} \rho^{-}}$	$-0.17 \pm 0.20 \pm 0.06$	$+0.19 \pm 0.30 \pm 0.08$	-0.05 ± 0.17
$C_{\rho^{+} \rho^{-}}$	$+0.01 \pm 0.15 \pm 0.06$	$-0.16 \pm 0.21 \pm 0.08$	-0.06 ± 0.13
$\mathcal{A}_{\rho^{+} \rho^{0}}$	$-0.12 \pm 0.13 \pm 0.10$	$+0.00 \pm 0.22 \pm 0.03$	-0.08 ± 0.13
$C_{\rho^{0} \rho^{0}}$	$+0.4 \pm 0.9 \pm 0.2$	--	$+0.4 \pm 0.9$
$S_{\rho^{0} \rho^{0}}$	$+0.5 \pm 0.9 \pm 0.2$	--	$+0.5 \pm 0.9$
$\mathcal{B}_{\rho^{+}{ }^{-}-\left[10^{-6}\right]}$	$25 \pm 2 \pm 4$	$23 \pm 4 \pm 3$	24 ± 3
$\mathcal{B}_{\rho^{+} \rho^{0}}\left[10^{-6}\right]$	$17 \pm 2 \pm 2$	$32 \pm 7-7$	18 ± 3
$\mathcal{B}_{\rho^{0} \rho^{0}}\left[10^{-6}\right]$	$0.8 \pm 0.3 \pm 0.2$	$0.4 \pm 0.4 \pm 0.2$	0.7 ± 0.3
$f_{L}^{\rho^{+} \rho^{-}}$	$0.99 \pm 0.02 \pm 0.02$	$0.94 \pm 0.04 \pm 0.03$	0.98 ± 0.02
$f_{L}^{\rho^{+} \rho^{0}}$	$0.90 \pm 0.04 \pm 0.03$	$0.95 \pm 0.11 \pm 0.02$	0.91 ± 0.04
$f_{L}^{\rho^{0} \rho^{0}}$	$0.70 \pm 0.14 \pm 0.05$	--	0.70 ± 0.15

should be ensured: Table 1 is an example at the limit of reasonable use.

- Tables spanning two columns can be implemented using the table* environment. They should be used sparingly, but in some cases cannot be avoided: Table 2 is an example.
- Extra vertical space throughout a table can be added by using e.g. \{1.4\}

Fig. 1. Example of a .pdf plot constructed from an .eps original, with (1) the original notation $M_{b c}$ changed to m_{ES} manually in the .eps file, and (2) the final version produced using epstopdf at the prompt on a Linux box. From Li (2008): $m_{\text {ES }}$ distributions from $B^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \gamma$ events. Points with error bars are data. The curves show the results from the r dependent $m_{E S}$ fit. The dashed and dash-dotted curves are the $q \bar{q}$ and all BG. The thin curve is the total signal including SCF and the thick curve is the total PDF.

Figures

To keep the length of the book within reasonable limits, we will need to be selective in the inclusion of figures; on the other hand, well-chosen and produced figures are irre-

The standalone template

Fig. 2. Example of a .jpg figure from UTfit (Bona et al., 2010) current in June 2010: Allowed regions for ($\bar{\rho}, \bar{\eta}$), given by the measurements of $\sin 2 \phi_{1}, \cos 2 \phi_{1}, \phi_{1}$ from $D^{0} \pi^{0}, \phi_{2}$, ϕ_{3}, and $2 \phi_{1}+\phi_{3}$. (In the figure the alternative notation $(\beta, \alpha, \gamma) \equiv\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is used.) The closed contours at 68% and 95% probability are shown. The full lines correspond to 95% probability regions for each constraint.

- $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ for the angles of the unitarity triangle;
- (S, C) for the coefficients of time-dependent $C P$ violation;
- mur for tho "mace" variahlo inharitod from oarlior R_{-}

Fig. 3. Example of a .png figure, converted for this purpose from the original .eps file. From CKMfitter (Charles et al., 2005): Constraints on $\left|\sin \left(2 \phi_{1}+\phi_{3}\right)\right|$ from the measurement of time-dependent $C P$ asymmetries in $D^{(*)} \pi(\rho)$; Summer 08 HFAG average including a preliminary Belle ICHEP08 update for $D^{*} \pi$ is used as input. The extraction of the UT-angle combination relies on $S U(3)$ symmetry for the estimates of the suppressed-to-leading amplitude ratios ... (see further specifics ad loc: not relevant for this example).
often be possible to edit notation by hand (e.g. Fig. 1), and/or using pstoedit/xfig or other simple programs. Plots produced under proprietary software (e.g. Adobe Illustrator) may need to be edited from source with thoset same programs, or otherwise remade from scratch. If the ${ }^{\circ}$

Templates for individual sections \& the full book

... see the LATEX/style talk tomorrow afternoon

Contents

A The facilities

1 The B-factories
2 The detectors and collaborations
3 Datataking and Monte Carlo production summary
B Tools and methods
4 Vertexing
5 Multivariate discriminants
5.1 Analysis optimization
5.2 Particle identification
5.3 Flavor tagging
5.4 Background discrimination
$6 \quad B$-meson reconstruction
7 Mixing and time-dependent analyses
8 Maximum likelihood fitting
9 Angular analysis
10 Dalitz analysis
11 Blind analysis
12 Systematic error estimation

C The results and their interpretation
13 The CKM matrix and the Kobayashi-Maskawa mechanism
14 B-physics . 3
$14.1 V_{\mathrm{ub}}$ and $V_{\mathrm{cb}} \ldots$.
$149 \quad V$, and $V /$

Part A

The facilities

Chapter 1

The B-factories

Editors:
Jonathan Dorfan (BABAR)
Hirotaka Sugawara (Belle)
Text here.

Chapter 2
The detectors and collaborations

Editors:

Nicolas Arnaud and William Wisniewski (BABAR) Hiroaki Aihara (Belle)

Text here.

Templates for individual sections \& the full book

... see the $\operatorname{AT} T_{E X}$ /style talk tomorrow afternoon

Part C
 The results and their interpretation

Chapter 13
The CKM matrix and the
Kobayashi-Maskawa mechanism

Editors:

Adrian Bevan and Soeren Prell (BABAR)
Boštjan Golob and Bruce Yabsley (Belle)
Thomas Mannel (theory)

Text here.

Chapter 14
B-physics
Text here.

14.4 Charmless B decays

Editors:

Fergus Wilson (BABAR)
Martin Beneke (theory)
Text here.
14.5 Mixing, and EPR correlations

Editors:

Soeren Prell (BABAR)
Bruce Yabsley (Belle)
Text here.

$14.6 \phi_{1}$, or β

Editors:
Owen Long (BABAR)
Yoshihide Sakai (Belle)
Ikaros Bigi (theory)
Text here.

Templates for individual sections \& the full book

... see the $A T_{E} X /$ style talk tomorrow afternoon

Hisaki Hayashii (Belle)

Antonio Pich (theory)

Text here.

Chapter 18
QED and initial state radiation studies

Editors:

Fabio Anulli (BABAR)
Galina Pakhlova (Belle)

Text here.

Chapter 19
Two-photon physics

Editors:
Sadaharu Uehara (Belle)

Text here.

Chapter 20
$\boldsymbol{r}(5 S)$ phvsics

Chapter 22

Global interpretation
22.1 Global CKM fits

Editors:

Gerald Eigen (BABAR)
Ryosuke Itoh (Belle)
Marcella Bona and Cecilia Tarantino (theory)
Text here.
22.2 Benchmark "new physics" models

Editors:
Emi Kou (theory)
Text here.
Bibliography: BaBar Publications

Bibliography: Belle Publications
... see the computing talk tomorrow afternoon

The content of the book

```
Friday 01 October 2010
```

08:30 Registration (30)

```
08:30 Registration (30)
09:00 Welcome (by A.Denig)(10)
09:00 Welcome (by A.Denig)(10)
09:10 Logistics (by W.Gradl) (10)
09:10 Logistics (by W.Gradl) (10)
09:20 Progress since KEK meeting (by B.Yabsley) (20)
09:20 Progress since KEK meeting (by B.Yabsley) (20)
09:40 Vertexing (by W.Hulsbergen) (20) (s0 Slides )
09:40 Vertexing (by W.Hulsbergen) (20) (s0 Slides )
        by EVO
        by EVO
10:00 Analysis optimization (by J.Ocariz) (10)
10:00 Analysis optimization (by J.Ocariz) (10)
10:10 B reconstruction (by A.Zupanc) (20) (s)Paper \; Slides | )
10:10 B reconstruction (by A.Zupanc) (20) (s)Paper \; Slides | )
10:30 Angular analyses (by G.Vasseur) (10) Slides )
10:30 Angular analyses (by G.Vasseur) (10) Slides )
10:40 Coffee Break (20)
10:40 Coffee Break (20)
11:00 TDEP (by A.Bevan) (20) (s) Paper \; Slides)
11:00 TDEP (by A.Bevan) (20) (s) Paper \; Slides)
11:20 Systematic errors section discussion (by W.Gradl + all)(20)
11:20 Systematic errors section discussion (by W.Gradl + all)(20)
11:40 CKM (by T.Mannel) (20) (5 Paper | )
11:40 CKM (by T.Mannel) (20) (5 Paper | )
12:00 Tour of MAMI (1n00)
12:00 Tour of MAMI (1n00)
13:00
13:00
Lunch (1n00)
Lunch (1n00)
14:00 Vcb, Vub (by C.Schwanda)(20)
14:00 Vcb, Vub (by C.Schwanda)(20)
        by EVO
```

 by EVO
    ```

\section*{The content of the book}
```

14:20 Vtd, Vts (by K.Flood) (10)
14:30 Mixing/EPR/CPT (by S.Prell) (20) (3) Slides)
14:50 phi1/beta (by A.Lazzaro) (10)
15:00 phi3/gamma (by F.Martinez-Vidal or K.Trabelsi) tbc (20)
by EVO
15:20 Coffee Break (40)
16:00 Radiative \& EW decays (by S.Playfer) (20)
16:20 Charmless B (by F.Wilson) (15)
16:35 Discussion time (eg.Global fits) (55)
by EVO
17:30 Adjourn (05)
19:30
Social Dinner (2n30)

```

```

09:00 phi2/alpha (by Y.Kolomensky) (15)
09:15 Baryonic B decays (by R.Waldi) (15)
09:30 Bottomonium (by S.Sekula or R.Mussa) tbc (20)
by EVO
09:50 Charm mixing and CPV (by B.Golob) (20)

```

\section*{The content of the book}
```

10:10 Charm baryon spectroscopy (by M.Charles)(20)
by EVO
10:30 Tau (by H.Hayashi) (30)
by EVO

```
\(12: 30\) Lunch (1n30)
```

11:00

```
11:00
11:30 Benchmark NP (by E.Kou)(20)
11:30 Benchmark NP (by E.Kou)(20)
        by EVO
        by EVO
11:50 QED/ISR (by G.Pakhlova) (20)
11:50 QED/ISR (by G.Pakhlova) (20)
12:10 Global fits (by R.Itoh)(20)
12:10 Global fits (by R.Itoh)(20)
14:00 Latex talk (by B.Yabsley) (20)
14:00 Latex talk (by B.Yabsley) (20)
14:20 Computing (by A.Bevan) (20)
14:20 Computing (by A.Bevan) (20)
14:40 Closeout (by S.Prell) (20)
14:40 Closeout (by S.Prell) (20)
15:00 Adjourn (05)
```

15:00 Adjourn (05)

```
```


[^0]: Citationn ff DADAD

