Quarkonia Propagation & Collectivity in the QGP: Elastic Diffusions, Energy losses and elliptic flow V2(\$)

Hamza Berrehrah

Supervisors: P.B. Gossiaux & J. Aichelin Subatech-Nantes

$AGThNuc 2010 \sim Wednesday 20^{th} Octobre 2010$

QGP Probe : bound states of Quarkonia ...

(Project & Aims)

Project : quarkonia propagation & collectivity ...

(Project & Aims)

Conclusion & Outlook

(Project & Aims)

II. Energy loss, Drag, Diffusion Coefs

III. QQ Collectivity

Conclusion & Outlook

Motivations ...

+ J/ψ Suppression studied for 20 years, ... But No consistent results

- + Recent Results of RHIC ... No significant additional suppression expected has been observed for J/ψ by increasing energy...
- + Large fluctuations over the value of σ_{elas}

(I. σ_{elas} calculation & results)

II. Energy loss, Drag, Diffusion Coefs

III. QQ Collectivity

Conclusion & Outlook

Elastic & Inelastic Process

- **Elastic Process**
- Compton Diffusion

Most important process

Hadron Diffusion

- Inelastic Process
- Gluon Dissociation

Dominant process

Hadron Dissociation

 $\Phi(p)$

 $\Phi'(p')$

Elastic & Inelastic Process

 $\Phi'(p')$

- ① Elastic Process
- Compton Diffusion

• Gluon Dissociation

Dominant proce

Hadron Dissociation

Quarkonia propagation and collectivity in QGP -AGThNuc 2010-H.Berrehrah

• Hadron Diffusion

Most important process

 σ_{elas} calculation : How ? \bullet Formalisms for σ_{elas} calculation

(1) Historical Calculation on Q-h/g σ_{elas}

③ Bhanot and Peskin formalism (79)

- From OPE (operator product expansion)
- Binding energy = $e_0 \gg LQCD$

field-dipole Interaction

 σ_{elas} calculation : How ? \bullet Formalisms for σ_{elas} calculation

(1) Historical Calculation on Q-h/g σ_{elas}

- 1 Bhanot and Peskin formalism (79)
 - From OPE (operator product expansion)
 - Binding energy = $e_0 \gg LQCD$

- Short-distance QCD calculation
- Optic theorem ...

field-dipole Interaction

Kharzeev and Fujii (99)

Quarkonia propagation and collectivity in QGP -AGThNuc 2010-H.Berrehrah

 σ_{elas} calculation : How ?

 \bullet Formalisms for σ_{elas} calculation

- 2 Rederivation of Peskin formula using Bethe-Salpeter
- **3** Other equivalent method in 1st order in pQCD based on :
 - Factorization Theorem + Bethe-Salpeter Amplitudes

Factorization Formula

$$\sigma_{\phi h}(v) = \int_0^1 dx \ \sigma_{\phi g}(xv) \times g(x)$$

- σ total of scattering quarkonia $\phi h \bigcirc$
- Perturbative Cross Section of $\phi-g$ scattering $\bigcirc \Rightarrow \mathcal{BS}$ Formalism
- ullet Distribution function of gluons in the hadron $igodoldsymbol{eta}$

Y. Oh, S. Kim, S. Houng Lee,(02)

Bethe Salpeter Formalism

Goal : Bethe Salpeter Vertex

Bethe Salpeter Formalism

Goal : Bethe Salpeter Vertex

Bethe Salpeter Equation

$$\mathcal{M} = \mathcal{M} + \int \mathcal{V} \mathcal{G} \mathcal{V} + \int \int \mathcal{V} \mathcal{G} \mathcal{V} \mathcal{G} \mathcal{V} + \dots + \left(\int \mathcal{V} \mathcal{G} \right)^n + \dots = \frac{\mathcal{V}}{1 - \int \mathcal{V} \mathcal{G}}$$

 \mathcal{V} : kernel, \mathcal{M} : amplitude, \mathcal{G} : propagateur

Bound states : produce a pole in \mathcal{M} .

 $\Rightarrow \mathcal{M}$ eigenvector Γ satisfies : $\Gamma = \int_{k} \mathcal{V}(p, k, P) \mathcal{G}(k, P) \Gamma(k, P)$

Project & Aims

Bethe Salpeter Formalism

² Bethe Salpeter Equation

Bethe Salpeter Formalism

² Bethe Salpeter Equation

3 Bethe Salpeter Vertices (Case of quarkonium in the rest frame)

• Instantanous Interaction

$$\Gamma_{l}(E,\vec{p}) \approx rac{-ie_{0}(2e_{0}-E)}{\pi E} \gamma^{0} \, rac{l+\gamma_{0}-\vec{p}'/m}{2} \cdot rac{\phi_{l}^{+-}(\vec{p})}{2} \cdot rac{l-\gamma_{0}-\vec{p}'/m}{2} \cdot \gamma^{0}$$

• $\phi_l^{+-}(\vec{p}) = \phi_{space}(\vec{p}) \times \phi_{spin}^{ij}$: instantanous wave function for the bound state \bigcirc

 $\Phi(p)$

 $\Phi'(p')$

- Compton Diffusion Process $J/\psi g$
- 2 gluons attached, "LO"
- \Rightarrow 6 diagrams (bb||, bbX, tt||, ttX, tb, bt)

σ_{elas} Interest & Discussion

1 $J/\Psi - g$: Gluon Dissociation vs Compton Diffusion "(O" Diagrams

$$R = \int d^3k \ n_{mb}(k) \ \sigma_{elas/inel}(s(k))$$

$$\hookrightarrow R = \int_{M^2}^{+\infty} ds \, \tilde{n}_{mb}(k) \, \sigma_{elas/inel}(s)$$

- Inelastic cross section has a threshold
- Quantities measured are convluted by MB Distribution
- Overlap σ_{elas} and MB ditribution larger than σ_{inel} and MB.

Y. Oh, S. Kim, S. Houng Lee,(02)

I. σ_{elas} calculation & results

(II. Energy loss, Drag, Diffusion Coefs)

III. QQ Collectivity

Conclusion & Outlook

Energy losses & Transport Coefficient

Intersection Description of the section of the s

$$\frac{dE}{d\tau} = \frac{dE}{dt} \times \frac{E}{M} = \sum_{i} \int d^{3}q \, n_{i}(\vec{q}) \, \frac{\sqrt{(p.q)^{2} - M^{2}m^{2}}}{Me} \, \int dt \, \frac{d\sigma_{elas}}{dt} \, (E' - E) \, ,$$

Energy losses & Transport Coefficient

Intersection Description of the section of the s

$$\frac{dE}{d\tau} = \frac{dE}{dt} \times \frac{E}{M} = \sum_{i} \int d^{3}q \ n_{i}(\vec{q}) \ \frac{\sqrt{(p.q)^{2} - M^{2}m^{2}}}{Me} \ \int \ dt \ \frac{d\sigma_{elas}}{dt} \ (E' - E),$$

Energy losses & Transport Coefficient

Intersection Description of the section of the s

$$\frac{dE}{d\tau} = \frac{dE}{dt} \times \frac{E}{M} = \sum_{i} \int d^{3}q \ n_{i}(\vec{q}) \ \frac{\sqrt{(p.q)^{2} - M^{2}m^{2}}}{Me} \ \int \ dt \ \frac{d\sigma_{elas}}{dt} \ (E' - E),$$

Project & Aims

(II. Energy loss, Drag, Diffusion Coefs)

1 Quarkonia (J/ψ)

3 Heavy Quark (C)

Project & Aims

1 Quarkonia (J/ψ)

3 Quarkonia (↑)

Drag Force & coefficient (HQ, J/ψ , Υ)

1 Drag Coefficient, for: $(\phi(M, E, p) \rightsquigarrow "i" (m, e, q))$

$$A_{i} = \frac{d }{dt} = \sum_{i} \int d^{3}q \ n_{i}(\vec{q}) \ \frac{\sqrt{(p.q)^{2} - M^{2}m^{2}}}{Ee} \ \int \ dt \ \frac{d\sigma_{elas}}{dt} \ \frac{\left\langle (\vec{P} - \vec{P}'). \ \vec{P} \right\rangle}{\|\vec{P}\|} \ ,$$

Drag Force & coefficient (HQ, J/ψ , Υ)

1 Drag Coefficient, for: $(\phi(M, E, p) \rightsquigarrow "i"(m, e, q))$

2 Quarkonia (J/ψ)

Quarkonia (Υ)

Diffusion coefficient (HQ, J/ψ , Υ)

■ Diffusion Coefficient, for: $(\phi(M, E, p) \rightsquigarrow "i"(m, e, q))$ $B(E) = \int_{E}^{+\infty} dE' A_i(E') \times \frac{E'}{P'} e^{-(E'-E)/T}, \text{ with } : B_{\perp} = B_{\parallel} = B, B \leftrightarrow A \text{ relation},$ • Fokker-Planck equation : $\frac{\partial f}{\partial t} = \frac{\partial}{\partial p_i} (A_i f + \frac{\partial}{\partial p_i} B_{ij} f) = -\vec{\nabla}_p. \vec{p}, \text{ (homogenous background)}$

• Einstein relation : $[\vec{A}f + \vec{\nabla}_{p}(Bf)]_{i} = 0, f = e^{-E/T}$, (stationary, D.B. Walton, J.Rafelski(99))

Diffusion coefficient (HQ, J/ψ , Υ)

Diffusion Coefficient, for: $(\phi(M, E, p) \rightsquigarrow "i"(m, e, q))$ $B(E) = \int_{E}^{+\infty} dE' A_{i}(E') \times \frac{E'}{P'} e^{-(E'-E)/T}, \text{ with } : B_{\perp} = B_{\parallel} = B, B \leftrightarrow A \text{ relation},$ $\bullet \text{ Fokker-Planck equation } : \frac{\partial f}{\partial t} = \frac{\partial}{\partial p_{i}} \left(A_{i}f + \frac{\partial}{\partial p_{i}} B_{ij}f \right) = -\vec{\nabla}_{p} \cdot \vec{p}, \text{ (homogenous background)}$ $\bullet \text{ Einstein relation } : [\vec{A}f + \vec{\nabla}_{p}(Bf)]_{i} = 0, f = e^{-E/T}, \text{ (stationary, D.B Walton, J.Bafelski(99))} \bigcirc$ $\bullet \text{ Heavy Quark} @ Quarkonia (J/\Psi) @ Quarkonia (\Upsilon)$

II. Energy loss, Drag, Diffusion Coefs

(III. QQ Collectivity)

Conclusion & Outlook

Conclusion & Outlook

MC@sHQ- as a cartoon

Conclusion & Outlook

MC@sHQ- as a cartoon

II. Energy loss, Drag, Diffusion Coefs

(III. QQ Collectivity)

Conclusion & Outlook

MC@sHQ- as a cartoon

: Hadronic phase (not taken into account)

Conclusion & Outlook

MC@sHQ- as a cartoon

II. Energy loss, Drag, Diffusion Coefs

(III. QQ Collectivity)

Conclusion & Outlook

MC@sHQ- as a cartoon

: QGP : Mixed phase 🔆 : hard collisions in initial NN collisions

: Hadronic phase (not taken into account)

Conclusion & Outlook

MC@sHQ- as a cartoon

II. Energy loss, Drag, Diffusion Coefs

(III. QQ Collectivity

Conclusion & Outlook

MC@sHQ-Keywords

(1) Stochastic evolution of $Q\bar{Q}$

- 2 MC@sHQ in few words
 - Stochastic Evolution : Boltzman evolution or FP evolution
- J/ψ suppression :- by T, cold nuclear effects, -Inelastic processes.
- Au-Au/Pb-Pb collisions at $\sqrt{s} = 200 \text{ GeV}$ or $\sqrt{s} = 5.5 \text{ TeV}$
- Coalescence and fragmentation mechanism ...
- Plasma type and ...
- study many observables : ν₂(φ), < p_t² >, dN/dφ_{rel}, R_{AA}, p_t spectra, y spectra, φ-spectra ...

 $Mean < p_t^2 >^{1/2} of J/\Psi vs y$

• Au-Au, $\sqrt{s} = 200 GeV$, Central collisions

No Melting. tuning factor k=1,5.

• Au-Au, $\sqrt{s} = 200 GeV$, Central collisions

- Melting $(T_c (J/\psi, \Upsilon) = 0.3 \text{ GeV}), k=1,5$
- Interaction with the medium \Rightarrow reduce their mean $p_t \prec pt_{J/w}^2 \succ^{1/2}$
- Less visible effect with Melting & more visible with $\nearrow \sigma_{\textit{elas}}$

Au-Au, $\sqrt{s} = 200 GeV$, Min bias collisions

Melting $(T_c (J/\psi, \Upsilon) = 0.3 \text{ GeV})$, 50M collisions

J/Ψ Elliptic flow vs p_t at mid rapidity

• Au-Au, $\sqrt{s} = 200 GeV$, Min bias collisions

- No Melting, 50M collisions
 - Non zero elliptic flow
 - Dissociation by $T \Rightarrow v_2 \nearrow$... Recombination ?
 - Influence of elastic processes, increase of $\sigma_{\textit{elas}} \Rightarrow \textit{v}_2 \nearrow$

R_{AA} of J/ψ vs p_t at mid/average rapidity & vs y

• Au-Au, $\sqrt{s} = 200 GeV$, Min bias collisions

No Melting, 50M collisions

- Au-Au, $\sqrt{s} = 200 GeV$, Min bias collisions
- Melting $(T_c (J/\psi, \Upsilon) = 0.3 \text{ GeV})$, 50M collisions
- Dissociation by T \Rightarrow $R_{AA}(J/\psi) \searrow$
- Dissociation by T \Rightarrow $R_{AA}(J/\psi)$ variation vs $p_t \approx$ small
- Influence of elastic processes, increase of $\sigma_{elas} \Rightarrow v_2 \nearrow$?

Project & Aims

I. σ_{elas} calculation & results

II. Energy loss, Drag, Diffusion Coefs

III. QQ Collectivity

Conclusion & Outlook

Quarkonia propagation and collectivity in QGP -AGThNuc 2010-H.Berrehrah

Project & Aims

I. σ_{elas} calculation & results

II. Energy loss, Drag, Diffusion Coefs

III. QQ Collectivity

Conclusion & Outlook

Conclusion & Outlook

Contents

1

Global Project : quarkonia propagation

 σ_{elas} calculation & results

Energy loss & Fokker-Planck Coefficient

σ_{inel} Results & Discussion

• Gluon Dissociation Process $J/\psi - g$

Conclusion & Outlook

σ_{inel} Results & Discussion

² Hadron Dissociation Process $J/\Psi - h$

- *Cross section of* $J/\psi h$
- *Cross section of* $J/\psi g \bigcirc$

•
$$GD\mathcal{F}: g(x) = 0.5(\eta + 1) \frac{(1+x)^{\eta}}{x}, \eta = 5(BP)$$

Dependence σ_{inel} vs ε et m

Oh, S. Kim, S. Houng Lee,(02)

Conclusion & Outlook

σ_{elas} Results & Discussion

^(a) Compton Diffusion Process $J/\psi - g$

2 gluons attached, "LO" • Soft Gluons ($k \approx mg^4$): columbic case $\mathcal{M}(k,k' \approx mg^4) \approx -2\alpha g^2 \frac{\delta^{ab}}{2N_a} \varepsilon_{\lambda 1}(k_1) \cdot \varepsilon_{\lambda 2}(k_2)$ • Opening of the imaginary part for $K < |\varepsilon|$ • Opening of the imaginary part for $K = |\varepsilon|$ • Hard Gluons ($k \approx mq^2$) $\mathcal{M}(k,k' \equiv mg^2) \approx -\frac{4g^2 \delta_{ij} \delta^{ab}}{N_c} \times \frac{1}{\left(1 + \left(\frac{a_0 |\mathbf{k} - \mathbf{k}'|}{4}\right)^2\right)^2}$ • Form Factor $\Rightarrow \sigma_{elas} \approx \frac{g^4}{2\pi m^2 N_c^2} \times \frac{1 + \frac{K^2}{8m|\epsilon|} + \frac{1}{2} \left(\frac{K^2}{8m|\epsilon|}\right)^2}{\left(1 + \frac{K^2}{2}\right)^3}$

Conclusion & Outlook

$\sigma_{elas}, \sigma_{inel}$ Results & Discussion

• $J/\psi - g$: Gluon Dissociation vs Compton Diffusion

"LO" Diagrams

$$R = \int d^3k \ n_{mb}(k) \ \sigma_{elas/inel}(s(k))$$
$$\hookrightarrow R = \int_{M^2}^{+\infty} ds \ \tilde{n}_{mb}(k) \ \sigma_{elas/inel}(s)$$

- \rightarrow Parton density at LHC energy
- \rightarrow Parton density at RHIC energy
- $\rightarrow \sigma$ Inelastic $J/\psi g$
- $\rightarrow \sigma \text{ Elastic } J/\psi g$
- $\rightarrow \sigma$ Inelastic $\eta_c g$

Diffusion coefficient (HQ, J/ψ , Υ)

1 Diffusion Coefficient, for: $(\phi(M, E, p) \rightsquigarrow "i"(m, e, q))$ $B(E) = \int_{E}^{+\infty} dE' A_i(E') \times \frac{E'}{P'} e^{-(E'-E)/T}, \text{ with } : B_{\perp} = B_{\parallel} = B B \leftrightarrow A \text{ relation},$

• Fokker-Planck equation : $\frac{\partial f}{\partial t} = \frac{\partial}{\partial \alpha_i} \left(A_i f + \frac{\partial}{\partial \alpha_i} B_{ij} f \right) = -\vec{\nabla}_p \cdot \vec{\rho}$, (homogenous background)

Einstein relation : $[\vec{A}f + \vec{\nabla}_{p}(Bf)]_{i} = 0, f = e^{-E/T}$, (stationary case)

Diffusion coefficient (HQ, J/ψ , Υ)

3 Diffusion Coefficient, for: $(\phi(M, E, p) \rightsquigarrow "i"(m, e, q))$ $B(E) = \int_{E}^{+\infty} dE' A_{i}(E') \times \frac{E'}{P'} e^{-(E'-E)/T}, \text{ with } : B_{\perp} = B_{\parallel} = B \quad B \leftrightarrow A \text{ relation},$

- Fokker-Planck equation : $\frac{\partial f}{\partial t} = \frac{\partial}{\partial \rho_i} \left(A_i f + \frac{\partial}{\partial \rho_i} B_{ij} f \right) = -\vec{\nabla}_{\rho}$. $\vec{\rho}$, (homogenous background)
- Einstein relation : $\left[\vec{A}f + \vec{\nabla}_{\rho}(Bf)\right]_{i} = 0, f = e^{-E/T}$, (stationary case)

1 Heavy Quark

2 Quarkonia (J/ψ)

③ Quarkonia (↑)

