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Schematic view of experiments with trapped Fermi gases

» Create trap potential
(combining lasers and/or magnetic fields)
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Near its minimum: V/(7) = 5m Z w?r?
i=x,y,z

Typically: w, < wy,w, (cigar shape)
» Load the atoms into the trap

» Cool them down
(laser cooling, evaporative cooling)

» Measure density profile by taking a picture
(if the cloud is too small, let it first expand - et e =
by switching off the trap)



Typical scales

system size ~ 100 pum
atom number ~ 10°
density n ~ 10 m~3  (compare with air: 3 x 10% m~3)

distance between atoms d ~ 1 um
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> quantum statistics important if wave packets start to overlap, i.e., if d ~ A
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» much lower temperatures (~ 10 nK) have been reached!

> range of the atom-atom interaction (van der Waals): R ~ 1 A
» since R/d ~ 10™*, the interaction can be replaced by a § function
» interaction fully characterized by the s-wave scattering length a



BCS-BEC crossover in symmetric nuclear matter

BEC limit:
> at low density and temperature: protons and @ @
neutrons are bound in deuterons ®
» deuterons form a Bose-Einstein condensate ®
(BEC) if T < Tgec @

» deuterons are dissociated if T 2> Eg = 2.2 MeV @

BCS limit:
> at high density: deuterons are not bound because
of Pauli blocking
» nevertheless nucleons form Cooper pairs at
T < Tses
» temperature of Cooper pair formation and
condensation is the same




Nuclear matter within the Noziéres-Schmitt-Rink scheme

M. Jin, M.U., P. Schuck: PRC 82, 024911 (2010)

>

>
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calculate in-medium T matrix (separable Yamaguchi potential)
NSR scheme = density calculated from Green's function with one
self-energy insertion in T-matrix approximation

here: mean-field calculated with Gogny force, use T-matrix only for
correlation contribution

deuteron binding energy Eg and superfluid critical temperature T¢ as
functions of the density n:
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Unitary limit as “simple” model for dilute neutron matter

» neutron-neutron 1Sy scattering length a = —18 fm
much larger than range of interaction (R ~ 1 fm)

> at low density, one can simultaneously satisfy krR < 1 and kr|a| > 1
> simplified model: consider the "unitary limit" kFR — 0 and kfr|a| — oo

» at T = 0: only length scale in the system: 1/kr (kg = (372n)'/3)

3 12kE
5

E
> ene er particle: (—) =
nergy per parti 2 ¢ o,

T=0
» ¢ =777 dimensionless parameter ( “Bertsch parameter”)

> measurements with cold atoms (—next slide), QMC calculations: § ~ 0.42



Back to cold atoms: Feshbach resonance

» consider Fermionic atoms trapped in two hyperfine states T, |
with equal numbers Ny = N,

> low temperature (— low energy): interaction in s wave dominant
— interaction only between atoms of opposite spin

» depending on the B field, two

atoms can have a bound state or V' bound state
not (molecule)

r

> scattering length a can be tuned

» fermionic atoms «- molecules

> on resonance
(B =834 G in the case of °Li):
unitary limit a — oo

\%
no bound state
> at zero temperature: r

crossover from BEC (molecules)
to BCS superfluid (Cooper pairs)

scattering length a
ve)

» from now on: concentrate on the attractive (a < 0) side of the resonance



Collective modes

» Small oscillations of the cloud size or shape around equilibrium
» Experiments done at Duke, Innsbruck, ENS

» Examples (cut through the xy plane):

» Radial breathing mode
» Depends on compressibility — equation of state

» Radial quadrupole mode
» Deformation of the Fermi sphere in a collisionless gas
— distinguish collisionless and hydrodynamic regimes
» No compression — independent of equation of state in
the hydrodynamic regime

» Scissors mode
» Rotate back and forth in a triaxial trap
> Relation to moment of inertia — distinguish between
superfluid or normal fluid behaviour




Temperature effects in collective modes in the BCS phase

» Transition from BCS superfluidity to the collisionless normal regime

Figure: Wright et al., Pf%L ?9 150403 (2007)
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Description of collective modes in the collisionless regime

(a) Quasiparticle Random-Phase Approximation (QRPA)

» Limited to numbers of atoms N < 10*
» Only available for spherically symmetric traps
» Interpretation in terms of macroscopic quantities difficult

(b) Semiclassical approaches
» T = 0: Superfluid hydrodynamics
(coherence length ¢ < system size)

» T > T.: Collisionless regime: Landau-Vlasov equation
(1/kr < system size, collision rate < trap frequency w)

» 0 < T < T.: Some Cooper pairs are thermally broken,
“mixture” of superfluid and normal components
Here:

Quasiparticle transport theory by Betbeder-Matibet and Nozieres (1969)
hydrodynamics and Vlasov equation as limits for T — 0 and T — T,



Radial quadrupole mode as function of temperature
y
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Ekz-yzﬂarbitrary units)

Cigar-shaped trap potential: w, ~ 17w,

Limit T — 0: hydrodynamic mode at w = /2w,

Limit T — T.: Vlasov equation predicts w = 2w, (Hartree field neglected)
Results for intermediate temperatures (N = 4 x 10°, 1/kra = —1.5):
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Radial quadrupole mode as

. . . Figure: Wright et al., PRL 99, 150403 (2007)
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Possible interpretation of the experimental result
Try to simulate the experiment

» Theory limited to the weakly-interacting BCS regime
— choose lower temperature T = 0.046T¢
— transition happens at higher value of —1/kra

» Fit numerical results as in the experiment:
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> Jump of the frequency (before T reaches T.!) due to fitting procedure
> Downshift of the hydrodynamic mode before the jump
» Strong damping around the BCS superfluid — normal transition



Collisional effects in collective modes in strongly
interacting Fermi gases

» Consider the normal phase only (T > T.): Boltzmann equation
» Transition from collisional hydrodynamics to the collisionless regime

| Figure'z: Wright' etal, F??L ?9 1'50403 ('2007)
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Medium effects: in-medium cross section and mean field

2

. L 4ma
> Scattering cross section in free space: 0p = ————
1+ (qa)

» Calculate in-medium T matrix in ladder approximation

P P,

o=+  + -

P P ' — -

» At low T, in-medium o strongly enhanced compared to free one, g

(precursor of the pole in the T matrix at T = T,)
[same effect in nuclear physics: Alm et al., PRC 50, 31 (1994)]

4ma
Mean field in Hartree approximation: Unartree = ——p
m

v

breaks down for in the strongly interacting case (a — o)

Calculate mean field as on-shell self-energy EE;
at the Fermi surface, U = X (w =0,k = k) @

U is weaker than Upga,tree and stays finite for |a| — oo

v

v

v

U strongly affects the density profiles



Approximate solutions of the Boltzmann equation

(a) Method of moments

» Linearise Boltzmann equation for small deviations from equilibrium

dfeq - -
(7, B, t
di (7,p,t)

» Ansatz for ®: polynomial in ¥ and p with time-dependent coefficients

» Write distribution function as f(7, B, t) = fuq(7, B) +

» Determine time-dependence by taking moments of the Boltzmann equation

(b) Numerical solution using the test-particle method

Very common method for the simulation of heavy-ion collision
Distribution function is replaced by an ensemble of “test particles”
Solve classical trajectories in the trap (+ mean field) potential

vV v vy

Collisions with probability in depending on the (in-medium) cross section
and the occupancy of the final states (Pauli blocking)

Here:
Method of moments including polynomials of second order in ¥ and p.



Radial quadrupole mode (1/kra = —1.34)

“Most collisionless” data point of Altmeyer et al., PRA 76, 033610 (2007)
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—— Pauli blocking of collisions leads to collisionless behaviour at low T
—— Mean field explains the upward shift of w above the ideal gas result (2w,)

—— In-medium cross section seems to deteriorate the agreement with the data



Scissors mode (1/krpa = —0.45)

Experiment Wright et al., PRL 99, 150403 (2007)
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—— Mean field improves agreement with the data.

—— In-medium o is too strong and compensates Pauli blocking effect
[Bruun and Smith, PRA 75, 04612 (2007); Riedl et al., PRA 78, 053609 (2008)]



Problem of in-medium o or of 2nd-order moments?

» With the in-medium o, the obtained relaxation time 7 is too short.

> Is this a defect of the underlying theory or just of the approximate solution
of the Boltzmann equation (method of moments)?

» Example: ansatz for the quadrupole mode

& =a(x® —y*) + alp: — p)) + cs(xpe — ypy)
— Fermi sphere deformation is the same everywhere in the trap

» But collisions are much more frequent in the centre than in the low-density
regions of the cloud

— Fermi surface deformation should be much smaller in the centre!

» Try two solutions:
(a) Numerical solution of the Boltzmann equation (test particles)
(b) Include higher-order moments into the method of moments
(e.g. 4th order, including a term ox r*(p? — p7))



Numerical simulation of the quadrupole mode

» Initially, test particles are distributed according to a Fermi distribution

> Excitation of the mode at t =0
> Results for Q(t) = (x* — y)(t) and its Fourier transform Q(w)

(N = 10000 atoms, 1/kra = —0.5)
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Comparison with the method of moments

» Compare response functions obtained from the method of moments (2nd
order), from the numerical simulation (test particles), and from the

extended method of moments (up to 4th-order moments):
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» Detailed comparison of extended moments method and numerical
simulation with experimental data is in progress.



Conclusions (1)

» Trapped atomic gases allow to study interesting many-body systems whose
hamiltonians are known and can experimentally be adjusted.

» Ultracold Fermi gases with a Feshbach resonance are of great interest also
for nuclear theory (BEC-BCS crossover in dilute nuclear matter,
unitarity-limited Fermi gas as model for dilute neutron matter)

» Trapped gases exhibit collective modes similar to nuclei.

» Methods from nuclear theory (QRPA, Vlasov and Boltzmann equations,
method of moments, test-particle method, ...) are very useful in the study
of trapped Fermi gases



Conclusions (2)

» Collective modes in ultracold trapped Fermi gases show the transition from
hydrodynamic to collisionless behaviour
» On the a < 0 side of the BEC-BCS crossover, distinguish two regimes:

1. Weakly interacting:
superfluid — collisionless normal fluid

2. Strongly interacting:
collisionally hydrodynamic normal fluid — collisionless normal fluid

Open questions

» Up to now no theoretical description of the dynamics of the superfluid

phase in the strongly interacting regime
—include collisions into the quasiparticle transport theory

> Generalisation to asymmetric systems (N; # N|)



