
Collective modes of trapped Fermi gases in the
BCS-BEC crossover

Michael Urban

(Institut de Physique Nucléaire d’Orsay)
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Sodium BEC experiment (group of W. Ketterle, MIT)



Selection of experimental groups working with fermions

◮ ENS Paris (C. Salomon)

◮ Innsbruck (R. Grimm)

◮ Duke University (J. Thomas)

◮ Rice University (R. Hulet)

◮ MIT (W. Ketterle)

◮ JILA (D. Jin)



Schematic view of experiments with trapped Fermi gases

◮ Create trap potential
(combining lasers and/or magnetic fields)

Near its minimum: V (~r) =
1
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Typically: ωz ≪ ωx , ωy (cigar shape)

◮ Load the atoms into the trap

◮ Cool them down
(laser cooling, evaporative cooling)

◮ Measure density profile by taking a picture
(if the cloud is too small, let it first expand
by switching off the trap)



Typical scales

system size ∼ 100 µm
atom number ∼ 106

density n ∼ 1018 m−3 (compare with air: 3 × 1025 m−3)
distance between atoms d ∼ 1 µm

◮ thermal de Broglie wave length λ =
2π~

p
=

2π~√
2mkBT

◮ quantum statistics important if wave packets start to overlap, i.e., if d ∼ λ

T ∼ 1

2mkB

(2π~

d

)2

∼ 1 µK

◮ much lower temperatures (∼ 10 nK) have been reached!

◮ range of the atom-atom interaction (van der Waals): R ∼ 1 Å

◮ since R/d ∼ 10−4, the interaction can be replaced by a δ function

◮ interaction fully characterized by the s-wave scattering length a



BCS-BEC crossover in symmetric nuclear matter

BEC limit:

◮ at low density and temperature: protons and
neutrons are bound in deuterons

◮ deuterons form a Bose-Einstein condensate
(BEC) if T < TBEC

◮ deuterons are dissociated if T & EB = 2.2 MeV

BCS limit:

◮ at high density: deuterons are not bound because
of Pauli blocking

◮ nevertheless nucleons form Cooper pairs at
T < TBCS

◮ temperature of Cooper pair formation and
condensation is the same



Nuclear matter within the Nozières-Schmitt-Rink scheme

M. Jin, M.U., P. Schuck: PRC 82, 024911 (2010)

◮ calculate in-medium T matrix (separable Yamaguchi potential)

◮ NSR scheme =̂ density calculated from Green’s function with one
self-energy insertion in T-matrix approximation

◮ here: mean-field calculated with Gogny force, use T-matrix only for
correlation contribution

◮ deuteron binding energy EB and superfluid critical temperature TC as
functions of the density n:
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Unitary limit as “simple” model for dilute neutron matter

◮ neutron-neutron 1S0 scattering length a = −18 fm
much larger than range of interaction (R ∼ 1 fm)

◮ at low density, one can simultaneously satisfy kFR ≪ 1 and kF |a| ≫ 1

◮ simplified model: consider the “unitary limit” kFR → 0 and kF |a| → ∞

◮ at T = 0: only length scale in the system: 1/kF (kF = (3π2n)1/3)

◮ energy per particle:
(E
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)
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= ξ
3
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2k2
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2mn

◮ ξ =??? dimensionless parameter (“Bertsch parameter”)

◮ measurements with cold atoms (→next slide), QMC calculations: ξ ≈ 0.42



Back to cold atoms: Feshbach resonance

◮ consider Fermionic atoms trapped in two hyperfine states ↑, ↓
with equal numbers N↑ = N↓

◮ low temperature (→ low energy): interaction in s wave dominant
→ interaction only between atoms of opposite spin

◮ depending on the B field, two
atoms can have a bound state or
not

◮ scattering length a can be tuned

◮ fermionic atoms ↔ molecules

◮ on resonance
(B = 834 G in the case of 6Li):
unitary limit a → ∞

◮ at zero temperature:
crossover from BEC (molecules)
to BCS superfluid (Cooper pairs)
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◮ from now on: concentrate on the attractive (a ≤ 0) side of the resonance



Collective modes

◮ Small oscillations of the cloud size or shape around equilibrium

◮ Experiments done at Duke, Innsbruck, ENS

◮ Examples (cut through the xy plane):

◮ Radial breathing mode
◮ Depends on compressibility → equation of state

◮ Radial quadrupole mode
◮ Deformation of the Fermi sphere in a collisionless gas

→ distinguish collisionless and hydrodynamic regimes
◮ No compression → independent of equation of state in

the hydrodynamic regime

◮ Scissors mode
◮ Rotate back and forth in a triaxial trap
◮ Relation to moment of inertia → distinguish between

superfluid or normal fluid behaviour



Temperature effects in collective modes in the BCS phase

◮ Transition from BCS superfluidity to the collisionless normal regime

BCSBEC

less
collision−

Figure: Wright et al., PRL 99, 150403 (2007)



Description of collective modes in the collisionless regime

(a) Quasiparticle Random-Phase Approximation (QRPA)

◮ Limited to numbers of atoms N . 104

◮ Only available for spherically symmetric traps

◮ Interpretation in terms of macroscopic quantities difficult

(b) Semiclassical approaches

◮ T = 0: Superfluid hydrodynamics
(coherence length ξ ≪ system size)

◮ T > Tc : Collisionless regime: Landau-Vlasov equation
(1/kF ≪ system size, collision rate ≪ trap frequency ω)

◮ 0 < T < Tc : Some Cooper pairs are thermally broken,
“mixture” of superfluid and normal components

Here:
Quasiparticle transport theory by Betbeder-Matibet and Nozières (1969)
hydrodynamics and Vlasov equation as limits for T → 0 and T → Tc



Radial quadrupole mode as function of temperature

◮ Cigar-shaped trap potential: ωr ≈ 17ωz

◮ Limit T → 0: hydrodynamic mode at ω =
√
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◮ Limit T → Tc : Vlasov equation predicts ω = 2 ωr (Hartree field neglected)

◮ Results for intermediate temperatures (N = 4 × 105, 1/kFa = −1.5):
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Radial quadrupole mode as

function of interaction strength

Experiment at Innsbruck
[Altmeyer et al., PRA 76, 033610 (2007)]

◮ 4 × 105 6Li atoms, T = 0.1TF , vary B

around Feshbach resonance (837 G)

◮ Excite axial quadrupole mode by
switching off an initial deformation in
the xy plane

◮ Determine frequency ωq and damping
κ by fitting 〈(x2 − y2)〉(t) by

A cos(ωt + φ)e−κt + Ce−ξt

◮ Jump from hydrodyn. to collisionless
◮ Strong damping around the jump
◮ Downshift of hydrodyn. frequency
◮ Upshift of collisionless frequency

BCSBEC

less
collision−

Figure: Wright et al., PRL 99, 150403 (2007)
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Possible interpretation of the experimental result
Try to simulate the experiment

◮ Theory limited to the weakly-interacting BCS regime
→ choose lower temperature T = 0.046TF

→ transition happens at higher value of −1/kFa

◮ Fit numerical results as in the experiment:
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◮ Jump of the frequency (before T reaches Tc !) due to fitting procedure
◮ Downshift of the hydrodynamic mode before the jump
◮ Strong damping around the BCS superfluid → normal transition



Collisional effects in collective modes in strongly

interacting Fermi gases
◮ Consider the normal phase only (T > Tc): Boltzmann equation

◮ Transition from collisional hydrodynamics to the collisionless regime

BCSBEC

less
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Figure: Wright et al., PRL 99, 150403 (2007)



Medium effects: in-medium cross section and mean field

◮ Scattering cross section in free space: σ0 =
4πa2

1 + (qa)2

◮ Calculate in-medium T matrix in ladder approximation

1

2

p’

= ++ + ...
p

1

p
2

p’

T

◮ At low T , in-medium σ strongly enhanced compared to free one, σ0

(precursor of the pole in the T matrix at T = Tc)
[same effect in nuclear physics: Alm et al., PRC 50, 31 (1994)]

◮ Mean field in Hartree approximation: UHartree =
4πa

m
ρ

breaks down for in the strongly interacting case (a → ∞)

◮ Calculate mean field as on-shell self-energy
at the Fermi surface, U = Σ(ω = 0, k = kµ) Σ Τ=

◮ U is weaker than UHartree and stays finite for |a| → ∞
◮ U strongly affects the density profiles



Approximate solutions of the Boltzmann equation

(a) Method of moments

◮ Linearise Boltzmann equation for small deviations from equilibrium

◮ Write distribution function as f (~r , ~p, t) = feq(~r , ~p) +
dfeq

dµ
Φ(~r , ~p, t)

◮ Ansatz for Φ: polynomial in ~r and ~p with time-dependent coefficients

◮ Determine time-dependence by taking moments of the Boltzmann equation

(b) Numerical solution using the test-particle method

◮ Very common method for the simulation of heavy-ion collision

◮ Distribution function is replaced by an ensemble of “test particles”

◮ Solve classical trajectories in the trap (+ mean field) potential

◮ Collisions with probability in depending on the (in-medium) cross section
and the occupancy of the final states (Pauli blocking)

Here:
Method of moments including polynomials of second order in ~r and ~p.



Radial quadrupole mode (1/kFa = −1.34)

“Most collisionless” data point of Altmeyer et al., PRA 76, 033610 (2007)
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—– Pauli blocking of collisions leads to collisionless behaviour at low T

—– Mean field explains the upward shift of ω above the ideal gas result (2ωr )

—– In-medium cross section seems to deteriorate the agreement with the data



Scissors mode (1/kFa = −0.45)

Experiment Wright et al., PRL 99, 150403 (2007)
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—– Mean field improves agreement with the data.

—– In-medium σ is too strong and compensates Pauli blocking effect
[Bruun and Smith, PRA 75, 04612 (2007); Riedl et al., PRA 78, 053609 (2008)]



Problem of in-medium σ or of 2nd-order moments?

◮ With the in-medium σ, the obtained relaxation time τ is too short.

◮ Is this a defect of the underlying theory or just of the approximate solution
of the Boltzmann equation (method of moments)?

◮ Example: ansatz for the quadrupole mode

Φ = c1(x
2 − y2) + c2(p

2

x − p2

y) + c3(xpx − ypy )

→ Fermi sphere deformation is the same everywhere in the trap

◮ But collisions are much more frequent in the centre than in the low-density
regions of the cloud

→ Fermi surface deformation should be much smaller in the centre!

◮ Try two solutions:

(a) Numerical solution of the Boltzmann equation (test particles)
(b) Include higher-order moments into the method of moments

(e.g. 4th order, including a term ∝ r2(p2

x − p2

y ))



Numerical simulation of the quadrupole mode

◮ Initially, test particles are distributed according to a Fermi distribution

◮ Excitation of the mode at t = 0

◮ Results for Q(t) = 〈x2 − y2〉(t) and its Fourier transform Q(ω)

(N = 10000 atoms, 1/kFa = −0.5)
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Comparison with the method of moments

◮ Compare response functions obtained from the method of moments (2nd
order), from the numerical simulation (test particles), and from the
extended method of moments (up to 4th-order moments):
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◮ Detailed comparison of extended moments method and numerical
simulation with experimental data is in progress.



Conclusions (1)

◮ Trapped atomic gases allow to study interesting many-body systems whose
hamiltonians are known and can experimentally be adjusted.

◮ Ultracold Fermi gases with a Feshbach resonance are of great interest also
for nuclear theory (BEC-BCS crossover in dilute nuclear matter,
unitarity-limited Fermi gas as model for dilute neutron matter)

◮ Trapped gases exhibit collective modes similar to nuclei.

◮ Methods from nuclear theory (QRPA, Vlasov and Boltzmann equations,
method of moments, test-particle method, . . . ) are very useful in the study
of trapped Fermi gases



Conclusions (2)

◮ Collective modes in ultracold trapped Fermi gases show the transition from
hydrodynamic to collisionless behaviour

◮ On the a < 0 side of the BEC-BCS crossover, distinguish two regimes:

1. Weakly interacting:
superfluid → collisionless normal fluid

2. Strongly interacting:
collisionally hydrodynamic normal fluid → collisionless normal fluid

Open questions

◮ Up to now no theoretical description of the dynamics of the superfluid
phase in the strongly interacting regime
→include collisions into the quasiparticle transport theory

◮ Generalisation to asymmetric systems (N↑ 6= N↓)


