

Tracking-based experiments in Double Beta Decay Outline

Ruben Saakyan

University College London

Neutrino 2010

Athens, 16 June 2010

- Why tracking?
- NEMO-3 <u>RESULTS!</u>
- SuperNEMO
- Gaseous Xe experiments
 - 🖗 EXO-gas
 - Service NEXT
- DCBA

Tracko-Calo, e.g. NEMO3/SuperNEMO

Open-minded search for any $0\nu\beta\beta$ mechanism

Topology can be used to disentangle underlying physics mechanism

Majoron

Topology detection is a more sensitive method for phenomena with continuous spectra, e.g. $2\nu\beta\beta$, $0\nu\beta\beta$ B (Majoron)

16-Jun-2010

The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of ββ isotopes 7kg of ¹⁰⁰Mo, 1kg of ⁸²Se + smaller quantities of ¹³⁰Te, ¹¹⁶Cd, ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>:

1940 plastic scintillators

coupled to low radioactivity PMTs

The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of ββ isotopes 7kg of ¹⁰⁰Mo, 1kg of ⁸²Se + smaller quantities of ¹³⁰Te, ¹¹⁶Cd, ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>:

1940 plastic scintillators coupled to low radioactivity PMTs

The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂0

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm Wood (top and bottom) (since march 2004: water + boron)

The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂0

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall)

> 40 cm **WOOd** (top and bottom) (since march 2004: water + boron)

Radon-free air around the detector

- Phase I(Feb 2003 Oct. 2004): High Radon
- Phase II(Dec 2004 Now): Low Radon (Radon cont. reduced by factor 6)

$\beta\beta$ events in NEMO3

Trigger: 1 PM > 150 keV

3 Geiger hits (2 neighbour layers + 1)

Trigger Rate $\sim 5.5 \text{ Hz}$

 $\beta\beta$ evts: 1 event every 2 minutes

Backgrounds are measured using event topology and timing to produce a background model for ββ <u>NIM A606 (2009) 449-465.</u>

See poster by B. Pahlka!

NEMO-3 Results

¹⁰⁰Mo (7kg), 2νββ

 $T_{1/2}(2v) = [7.17 \pm 0.01(stat) \pm 0.54(sys)] \times 10^{18} \text{ yr} \Rightarrow ~3.5 \text{ yr}$, Phase II (low Rn), S/B = 76 $M^{2v}(^{100}Mo) = 0.126 \pm 0.006$

to be compared with earlier published in PRL 95 (182302) 2005:

 $T_{1/2}(2v) = [7.11 \pm 0.02(stat) \pm 0.54(sys)] \times 10^{18} \text{ yr} \Rightarrow ~1 \text{ yr}, \text{ Phase I, S/B} = 40$

NEMO-3 to run until Nov'10. Special runs to improve systematics.

$2\nu\beta\beta$ results for other isotopes (preliminary)

Many more results available. Excited states, Ov for different mechanisms and isotopes

See poster by B. Pahlka

$\underline{Ov\beta\beta}$ for $\frac{100}{Oo}(-7kg)$ and $^{82}Se(-1kg)$

[2.8-3.2] MeV: DATA = 18; MC = 16.4 \pm 1.4 T_{1/2}(Ov) > 1.0×10²⁴ yr at 90%CL <m_v> < (0.47 - 0.96) eV

 $V+A:T_{1/2}(0v) > 5.4 \times 10^{23} \text{ yr at } 90\%CL$ Majoron: $T_{1/2}(0v) > 2.1 \times 10^{22} \text{ yr at } 90\%CL$ [2.6-3.2] MeV: DATA = 14; MC = 10.9 ± 1.3 $T_{1/2}(0v) > 3.2 \times 10^{23}$ yr at 90%CL $< m_v > < (0.94 - 2.5) eV$

 $\lambda < 1.4 \times 10^{-6}$ g_{ee} < 0.5 × 10⁻⁴ World's best result!

From NEMO-3 to SuperNEMO

NEMO-3

SuperNEMO

¹⁰⁰ Mo	isotope	⁸² Se or other
7 kg	isotope mass M	100+ kg
18 %	efficiency ε	~ 30 %
²⁰⁸ Tl: ~ 100 μBq/kg ²¹⁴ Bi: < 300 μBq/kg Rn: 5 mBq/m ³	internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the ββ foi Rn in the tracker	$208 \text{Tl} \le 2 \mu \text{Bq/kg}$ $if \ ^{82}Se: \ ^{214}\text{Bi} \le 10 \ \mu \text{Bq/kg}$ $Rn \le 0.15 \ \text{mBq/m}^3$
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2}(\beta\beta0\nu) > 2 \times 10^{24}$ $< m_{\nu} > < 0.3 - 0.9 \text{ eV}$	y	$T_{1/2}(\beta\beta0\nu) > 1 \times 10^{26} \text{ y}$ $< m_{\nu} > < 0.04 - 0.11 \text{ eV}$

<u>SuperNEMO (~100 people)</u>

<u>Planar</u> and <u>modular</u> design:

~ 100 kg of enriched isotopes (20 modules x 5 kg)

1 module:

Source (~40 mg/cm²) 4 x 2.7 m² ⁸²Se first but almost any isotope possible (82 Se: High Q_{ββ}, long T_{1/2}(2v), proven enrichment technology) ¹⁵⁰Nd, ⁴⁸Ca being looked at

Tracking : drift chamber ~2000 cells in Geiger mode <u>Calorimeter:</u> scintillators + PMTs 550 PMTs + scint. blocks <u>Modules</u> surrounded by water passive shielding

2 m (assembled, ~0.5m between source and calorimeter)

Physics Studies

Full chain of GEANT-4 based software + detector effects

+ NEMO3 experience

5 yr with 100kg of ⁸²Se: $T_{1/2} > 10^{26}$ yr, $\langle m_v \rangle < 50-100$ meV at 90%CL with target detector parameters

Much more than 1 result!

- Other mechanisms: V+A, Majoron, etc
- Disentangling <m_v> and V+A: arXiv: 1005.1241

• $\beta\beta$ Ov(and 2v) to excited states

See SuperNEMO poster by F. Nova

ββ Source (⁸²Se)

Enrichment

100 kg by centrifugation is feasible

Foil production: 40–50 mg/cm²

NEMO-3 "composite" foil Other methods being explored

Radio-purity: ²⁰⁸Tl < 2 µBq/kg, ²¹⁴Bi < 10 µBq/kg Chemical and physical purification methods

Dedicated BiPo detector to measure these levels

Calorimeter R&D

Scintillator

- Material
- Shape
- Size
- Coating

PMT

- QE
- Uniformity
- Collection efficiency
- Radiopurity

Required resolution demonstrated with 28cm Hex block (≥10cm thick) directly coupled to 8" PMT

FWHM = 4% @ Q_{\beta\beta} = 3 MeV

Tracker R&D

- Basic cell design developed and verified with 90-cell prototype
- Mechanical model of automated wiring robot
- Cosmic muon data collected. Required performance demonstrated
 - 0.7mm transverse, Icm longitudinal resolution
 - Cells efficiency >98%

From R&D to construction Ist SuperNEMO module - Demonstrator

Goals

- Demonstrate feasibility of large scale mass production
- For measure backgrounds especially from radon emanation
 - Solve a sealistic super-module
- Fo finalise detector design
- For produce a **competitive** physics measurement

0.3 expected bkg events in 2.8 - 3.2 MeV with 7kg of ⁸²Se in 2 yr

Sensitivity by 2015: 6.5 · 10²⁴ yr (90% CL)

Equivalent to $3 \cdot 10^{25}$ yr for ⁷⁶Ge (using phase space ratio only)

or ~4 expected "golden events" if KK claim is correct

SuperNEMO schedule highlights

- NEMO-3 decommissioning early 2011
- Demonstrator construction 2010–2012
- Demonstrator physics run start-up 2013
- Full detector construction start-up 2014
- Target sensitivity (~0.05 eV) 2019

KK claim to be verified with Demonstrator by 2015

High Pressure ¹³⁶Xe TPC.

•Alternatives being explored:

Charge avalanche gain via MicromegasDual drift volume, instrumented barrel

Difficulties

- Multiple scattering in HPXe is large
- In pure Xe diffusion is significant
- δ-rays, bremsstrahlung

16-Jun-2010

EL light for calorimetry

NEXT - Neutrino Experiment with a Xenon TPC

A 10 bar TPC

R&D underway with small-scale prototypes:

- Studies of primary and secondary scintillation
- Energy resolution in Xe with Micromegas

• Schedule:

2010: preparation of site in LSC (Canfranc)
2011: first prototype operating in LSC
2012: NEXT-100 construction (~100 kg of ¹³⁶Xe)
2013: NEXT-100 commissioning

• Assumptions:

- 0.1 mBq/kg vessel
- 100 mBq from readouts
- \bullet Minimum set of cuts on $\beta\beta$ topology
- $\delta E/E = 1\%$ (FWHM)
- Sensitivity (500 kg·yr, 90% CL):

See NEXT poster by T. Dafni

Plots courtesy of NEXT collaboration 21

R. Saakyan (UCL), Tracking DBD experiments, Neutrino'2010, Athens

EXO-Gas (136Xe)

- EXO-Gas is building a tracking TPC using an Electroluminescence (EL) readout
- Will operate in pure xenon (ie no quench)
- Part of a prototype to complement studies of barium tagging for decays in gas
- Further activity depends on results of EXO-200

Chamber for studying energy resolution in gaseous Xe at Carleton

Drift Chamber Beta Ray Analyser

R. Saakyan (UCL), Tracking DBD experiments, Neutrino'2010, Athens

Concluding Remarks

- Fracking-based experiments:
 - Have competitive sensitivity NEMO-3: T_{1/2} (¹⁰⁰Mo) > 10²⁴ yr

 \sim <m_v> < ~0.5 eV, g_{ee} < 0.5×10⁻⁴, λ < 1.4×10⁻⁶

- Provide a unique and powerful background rejection
- Solution Look for a smoking gun evidence of the process
- May shed light on physics mechanism
- Next 5-10 yrs will see "the claim" tested and reach the benchmark sensitivity of 0.05 eV

BACKUP

LSM Extension

Schedule

- Safety tunnel construction start Sep 2009
- innel routier du Fréjus Safety tunnel, end of civil construction - End 2011

France

Detailed study of LSM extension (ULISSE) - 2010

Italie

Galerie de sécurité

Projet d'extension Ulisse

- Deadline for final decision/money commitment May 2011
- Excavation of new Lab completed mid-2012
- Outfitting completed, Lab ready to host experiments 2013

Minimal scenario: 45,000m³ (100m long), 12M€ excavation + 3M€ outfitting

2^d ULISSE workshop in October. 11 LOIs received.

16-Jun-2010

abo

tuel

NEMO-3 Backgrounds for $\beta\beta$

NEMO-3 Backgrounds for ββ

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Main bkg for $\beta\beta2\nu$ but negligeable for $\beta\beta0\nu$ $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

Compton + Compton

Compton + Möller

NEMO-3 Backgrounds for ββ

þ

source

foil

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Main bkg for $\beta\beta2\nu$ but negligeable for $\beta\beta0\nu$ $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

NEMO-3 Backgrounds for $\beta\beta$

 $\begin{aligned} &\blacktriangleright \textbf{External } \gamma \text{ (if the } \gamma \text{ is not detected in the scintillators)} \\ & \text{Origin: natural radioactivity of the detector or neutrons} \\ & \text{Main bkg for } \beta\beta2\nu \text{ but negligeable for } \beta\beta0\nu \\ & (^{100}\text{Mo and } ^{82}\text{Se } Q_{\beta\beta} \sim 3 \text{ MeV} > \text{E}\gamma(^{208}\text{Tl}) \sim 2.6 \text{ MeV}) \end{aligned}$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

NEMO-3 Backgrounds for $\beta\beta$

 $\succ \text{External } \gamma \text{ (if the } \gamma \text{ is not detected in the scintillators)}$ Origin: natural radioactivity of the detector or neutrons Main bkg for $\beta\beta2\nu$ but negligeable for $\beta\beta0\nu$ (¹⁰⁰Mo and ⁸²Se $Q_{\beta\beta}\sim 3 \text{ MeV} > E\gamma(^{208}\text{Tl}) \sim 2.6 \text{ MeV}$)

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

> Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Each bkg is measured using the NEMO-3 data

R. Saakyan (UCL), Tracking DBD experiments, Neutrino'2010, Athens

Monitoring of the Radon bkg every day

- ➢ Phase 1: Feb. 2003 → Sept. 2004 Radon Contamination
- ➢ Phase 2: Dec. 2004 → Today
 A (Radon) ≈ 5 mBq/m³

$0\nu\beta\beta$ experiment is about BKG suppression!

