

SNR and molecular cloud interactions: new HESS/Fermi-LAT results

Jérémie Méhault

For Fermi-LAT and H.E.S.S. collaborations

LUPM - Montpellier

27th June 2011

CRISM-Montpellier

Contents

- 1 Massive stars born in dense clouds
- OH maser as shock tracer
- 3 Gamma-ray detection from shocked cloud
 - SNR IC443
 - SNR W44
 - SNR W28
 - SNR W51C
- 4 Conclusion

Molecular clouds as nurseries for massive stars

Eagle Nebula - Hubble space telescope

- Interstellar medium not homogeneous
- Temperature of cloud: 10 100 K
- Density inside cloud: $10^2 10^6$ cm⁻³
- Jean's Mass: $M_J \sim 10^5~{
 m M}_{\odot}$
- Free fall time ($R\sim$ 10 pc): $\tau\sim$ 10⁶ yrs

Molecular clouds as nurseries for massive stars

- Massive star born in OB star association
- They die in their progenitor cloud
- Size of supernova remnant (SNR):
 - $ightharpoonup \sim 500 \ {
 m yrs}
 ightharpoonup \sim 5 \ {
 m pc} \ ({
 m Tycho})$
 - ightharpoonup \sim 20000 yrs \rightarrow \sim 30 pc (W44)
- If distance \sim 5 kpc: SNR size is \sim 0.07° at \sim 500 yrs
- ⇒ H.E.S.S. angular resolution: *PSF* < 0.07°
 - SNR MORPHOLOGY CAN BE PROBED IN DETAIL
 - MWL CORRELATION STUDIES

SNR shock waves efficient accelerators?

- pp $\rightarrow \pi^0$ X then $\pi^0 \rightarrow \gamma \gamma$
- ▶ Illuminated clouds: CRs escaped from accelerator (see Stefano's talk)
- Shocked cloud ⇒ interaction SNR/MC (example of SNR/¹3CO)

- Protons in cloud accelerated by shock wave (Fermi acceleration)
- Need a dense target to increase collision rate

SNR/MC Interaction - OH maser (P. Lockett et al 1999)

- see Dave's talk
- SNR near molecular cloud
- Shock wave ⇒ pumping OH radical
- OH emission at 1720 MHz
- OH masers behind the shock

- Particular environment needed for stimulated emission:
 - ► Temperature: *T* ∈ [50; 125] K
 - ▶ H_2 density of shocked material: $n_{H_2} \in [10^4; 5.10^5]$ cm⁻³
 - Weakly ionised medium: $n/n_H < 10^{-4}$
 - ▶ OH column density: $n_{OH} \in [10^{16}; 10^{17}] \text{ cm}^{-2}$

IC443 as seen by MAGIC and Fermi-LAT

VHE γ -ray excess (J. Albert et al 2007)

Intensity high energy (HE) γ -ray map (A.A. Abdo et al 2010)

- VHE γ -ray excess coincident with:
 - HE γ-ray excess
 - OH maser (black point)
 - ¹²CO maximum excess (cyan)

IC443 Spectral Energy Distribution (A.A. Abdo et al 2010)

- Only hadronic scenario can explain it
- Density of ambiant medium ≥ 10 cm⁻³
- Shocked cloud material $\sim 10^5 \ \text{cm}^{-3}$
- Cloud estimated mass: $\sim 10^4 \ M_{\odot}$

SNR W44 as seen by HESS and Fermi-LAT

?

Nothing published

W44 as seen by H.E.S.S.

W44 as seen by Fermi-LAT. (A.A. Abdo et al 2010)

- HE γ -ray coincident with shell and OH masers (white crosses)
- VHE emission: ⇒ *under investigations*

W44 Spectral Energy Distribution (A.A. Abdo et al 2010)

- Only hadronic scenario can explain it
- ullet Density of ambiant medium $\gtrsim 5~{
 m cm}^{-3}$
- Shocked material density $\in [10^3; 10^5] \text{ cm}^{-3}$
- Cloud estimated mass: $\sim 10^6 \ M_{\odot}$

SNR W28 as seen by HESS and Fermi-LAT

W28 as seen by H.E.S.S. (F. Aharonian et al. 2008)

W28 seen by Fermi-LAT (A.A. Abdo et al. 2010)

- W28 associated with shocked MC in north (OH masers)
- ullet VHE and HE γ -ray emission (north) coincident with OH masers

W28 (north) Spectral Energy Distribution (A.A. Abdo et al 2010)

- Any scenarios can explain γ -ray emission
- But only hadronic using radio data
- ullet Shocked gas density $\sim 10^4~\text{cm}^{-3}$
- Cloud estimated mass: $\sim 5.10^5 \ M_{\odot}$

SNR W51C as seen by HESS and Fermi-LAT

W51 as seen by H.E.S.S. (A. Fiasson et al. 2009)

W51 as seen by Fermi-LAT (A.A. Abdo et al 2010)

- 2 possible counterparts:
 - pulsar wind nebula (open cross)
 - ► shocked molecular cloud (white contours) → OH maser (triangle)
- Can morphology help discriminate? ⇒ under investigations

W51C Spectral Energy Distribution (A.A. Abdo et al. 2010)

- Hadron-dominated scenario explain γ -ray and radio emissions
- Density of ambiant medium needed: $\sim 10~\text{cm}^{-3}$
- Cloud estimated mass: 10⁴ M_☉

Conclusion

- Massive stars born in molecular cloud
- SNR in dense interstellar medium
- ▶ Proton acceleration ⇒ Proton-Proton collision
- γ -ray produced by π^0 decay
- OH maser as tracer of shock material
- Most significant case of interaction SNR/MC
 - ► IC443, W44, W28, W51C
- Others SNRs candidates (see Ryan's talk)
- W51C:
 - Spectra strongly suggest hadronic
 - Morphological analysis in progress
- Multi-wavelength needed to constrain scenarios

Conclusion

- Massive stars born in molecular cloud
- SNR in dense interstellar medium
- ▶ Proton acceleration ⇒ Proton-Proton collision
- γ -ray produced by π^0 decay
- OH maser as tracer of shock material
- Most significant case of interaction SNR/MC
 - ► IC443, W44, W28, W51C
- Others SNRs candidates (see Ryan's talk)
- W51C:
 - Spectra strongly suggest hadronic
 - Morphological analysis in progress
- Multi-wavelength needed to constrain scenarios

