CRISM 2011

The GeV-TeV Galactic γ-ray diffuse emission

I. Uncertainties in the predictions of the hadronic component

A&A 531, A37 (2011)

Timur DELAHAYE

with Armand Fiasson, Martin Pohl, Pierre Salati

The γ-ray diffuse emission

Why should one care?

Interresting probe of the ISM

Indirect measurement of cosmic rays everywhere in the Galaxy

The y-ray diffuse emission

Why should one care?

Main background to source

resolution

Main foreground to extragalactic component

Main background to dark matter research

Why only the hadronic contribution?

- π⁰ decay
- Inverse Compton
- Bremsstrahlung
- Isotropic component
- Dark matter?

Strong 2011

Fig. 1. Spectrum of inner Galaxy ($300^{o} < l < 60^{o}$, $|b| < 10^{o}$). Model from GAL-PROP, based on locally-measured cosmic ray spectra and a halo height 4 kpc. Lines show the components of model; red: pion-decay, green: inverse Compton, black: extragalactic/isotropic, blue: total without sources, magenta dashed: Fermi-detected sources and total including sources. Data: black vertical bars: Fermi-LAT (PRELIMINARY).

What are the ingredients?

- Cosmic ray source distribution
- Cosmic ray spectrum at the Earth
- Propagation model
- π^0 production cross-sections
- Gas maps

Propagation model

$$\partial_t \Psi + \vec{\nabla} \cdot (\vec{V}_c \Psi - K \vec{\nabla} \Psi) + \partial_E (b_{loss} \Psi - D_{EE} \partial_E \Psi) = Q - D$$

Putze et al. A&A 516 (2010) A66

Propagation parameters

The blue spot

Halo half thickness L

Propagation parameters

Source distribution

The gas maps

X_{co} factor

Local γ-ray emissivity

$$\mathcal{E}_{\text{eff}}(E) = \frac{1}{X_H} \sum_{i=p,\alpha} \sum_{j=H,He} \int_{T_{min}}^{\infty} \frac{d\sigma_{ij}}{dE} \, \Phi_i(T,\odot) \, dT$$

Nuclear enhancement factor:

$$\epsilon_{M} = \frac{\mathcal{E}_{\text{eff}}(E)}{\frac{1}{X_{H}} \int_{T_{min}}^{\infty} \frac{d\sigma_{pH}}{dE} \Phi_{p}(T, \odot) dT}$$

Fermi measurement of the local emissivity

The northern patch

Emissivity

Conclusions

The diffuse γ-ray emission is well modelised but suffers from many uncertainties some of which very important.

Many more data are required

Working with Fermi people would be very nice