A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays

Antje Putze B. Coste (LPSC), L. Derome (LPSC), F. Donato (INFN Torino), & D. Maurin (LPSC)

The Oskar Klein Centre for Cosmoparticle Physics (Stockholm University)

Craar Klein

Phenomenology of nuclear cosmic rays

Why study cosmic-ray propagation?

- Study of the standard cosmic-ray astrophysics;
- Indirect search for dark matter.

used for the first time in the context of cosmic-ray physics [Putze *et al.*, A&A (2009–2011)].

Antje Putze

Constraints on CR parameters 000000

Conclusion

Metropolis-Hastings algorithm

Evaluation of the burn-in and correlation lengths for independent sample extraction

Antje Putze

Constraints on CR parameters 000000

The USINE propagation code

Slide from D. Maurin

USINE (2)

A – Ingredients common to all models.

1. Base ingredients

- Nuclear charts (m, A, Z, β and EC-decay channels)
- Atomic properties (FIP, Ek-shell...)
- Nuclear physics (production, inelastic... X-sections)
 Energy losses (Coulomb, ionisation)
- 2. Solar modulation (IS to TOA)
- 3. Database (experimental fluxes)
- 4. Visualization and fitting tools
 - Displays
 - Fitting tools

B – Ingredients specific to each model

1. Description (Input variables)

- Geometry
- Sources (spatial distribution, spectra)
- Propagation (transport coefficient, equation)

2. Solution of the transport equation

- Standard secondary/primary/tertiary contributions
- Unstable radioactive nuclei (BETA or EC)
- Energy redistributions (energy losses, reacceleration)
- Exotic primary contributions

Diffusion Model

USINE — semi-analytical propagation code [D. Manuel]

Diffusion model with minimal reacceleration, constant Galactic wind

Galaxy is divided into two zones:

- a thin disk of size h;
- 2 a diffusive halo of size $L \gg h$.

 $K(R) = K_0 \beta^{\eta_T} R^{\delta}$ $Q(R) = q \beta^{\eta_S} R^{-\alpha}$

$$n_d = n, \quad n_h = 0$$

Free parameters

- 6 transport par.: K_0 [kpc²/Myr], η_T , δ , V_c and V_a [km/s], L [kpc].
- 3 source par.: q in $(m^3 \text{ s GeV}/n)^{-1}$, η_S , α

Constraints on CR parameters 0000

<u>Stable nuclei</u>: constraining transport parameters – B/C

- Configuration with V_c and V_a preferred:
 - L = 4 kpc fixed

$$V_c = 18.8^{+0.3}_{-0.3}\,{\rm km/s}$$

$$\delta = 0.86^{+0.04}_{-0.04}$$

- $K_0 = 0.0046^{+0.0008}_{-0.0006} \text{ kpc}^2/\text{Myr}$ $V_{a} = 38^{+2} \, \mathrm{km/s}$
- Kolmogorov spectral index $(\delta = 1/3)$ disfavoured.

Stable nuclei: constraining transport parameters $- {}^{3}\text{He}/{}^{4}\text{He}$

B/C:

• abundant;

• elemental separation.

 3 He/ 4 He:

- very abundant;
- isotopic separation.

Data	V_c δ		$K_0 imes 10^2$	Va
	$(\mathrm{km}\mathrm{s}^{-1})$	-	$(kpc^2 Myr^{-1})$	$(\mathrm{km}\mathrm{s}^{-1})$
3 He $/^{4}$ He	$17.3^{+0.3}_{-0.4}$	$0.79\substack{+0.05 \\ -0.04}$	$0.50\substack{+0.05 \\ -0.06}$	40^{+2}_{-3}
B/C	$18.9\substack{+0.3 \\ -0.4}$	$0.86\substack{+0.04 \\ -0.04}$	$0.46\substack{+0.08\\-0.06}$	38^{+2}_{-2}

Constraints on CR parameters $\circ\circ\circ\circ\circ\circ\circ$

Radioactive secondaries: constraining the halo size L

Primary nuclei: constraining source parameters

Model	η_T	$K_0^{ m best} imes 10^2$	$\delta^{ m best}$	$V_c^{\rm best}$	$V_a^{ m best}$	$\chi^2/d.o.f$		
		$(kpc^2 Myr^{-1})$		$(km s^{-1})$	$(km s^{-1})$			
П	1.	9.76	0.23	0.	73.2	4.73		
III	1.	0.48	0.86	18.8	38.0	1.47		
I/0	-2.6	2.05	0.61	0.	0.	3.29		
III/II	-1.3	3.16	0.51	0.	45.4	2.26		
[Maurin <i>et al.</i> , A&A 516 (2010), A67]								

Constraints on CR parameters $\circ \circ \circ \circ \circ \bullet$

Primary nuclei: p and He

 α well constrained between 2.2 and 2.5 (independent of model and data) asymptotic regime ($\gamma_{asymp} = \alpha + \delta$) not reached

same results for heavier nuclei

Antje Putze

Oskar Klein Centre (SU)

CRISM 2011 MCMC to sample GCR parameters

10/11

Constraints on CR parameters $\circ \circ \circ \circ \circ \bullet$

Primary nuclei: p and He

 α well constrained between 2.2 and 2.5 (independent of model and data) asymptotic regime ($\gamma_{asymp} = \alpha + \delta$) not reached

same results for heavier nuclei

Antje Putze

11/11

Conclusion

Successful posterior PDF extraction of the propagation parameters of the one dimensional diffusion model

First estimation of the Galactic halo size L and the radius r_h of the local bubble

Good constraints of the spectral slope α implicating a universality for primary nuclei

MCMC is a robust tool allowing an excellent parameter estimation in high dimensional parameter spaces.