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The `State-of-the Art'

of Heliospheric

Cosmic Ray Transport
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The Theoretical Framework

Kinetic transport equation:
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anisotropic spatial di�usion: tensor
$
� (r; p;B(t))

scalar momentum di�usion: coe�cient D(r; p;B(t))

convection and drift: velocity u(t)

adiabatic energy changes: r � u(t) 6= 0

sources/sinks: S(r; p; t)

||||||||||||||||||||||||||||||
Solution in � 4-D phase space with { �nite di�erence/volume solver or

{ stochastic di�erential equations
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The Theoretical Framework

Transport processes can be studied separately: for energetic particles

in the MeV-GeV range spatial di�usion is dominant

in the keV-MeV range momentum di�usion is dominant

Key transport quantities = di�usion tensor and momentum di�usion:
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The Theoretical Framework

Transport processes can be studied separately: for energetic particles

in the MeV-GeV range spatial di�usion is dominant

allowing study of the structure of the di�usion tensor

Key transport quantity = di�usion tensor:

$
� (r; p; t) =

0
@�?1 0 0

0 �?2 0
0 0 �k

1
A ; �k =

v2

8

1Z
�1

(1� �)2

D��(�)
d� : : :

(�xy = �yx = 0 for axisymmetric turbulence and vanishing
magnetic helicity assumed in the following)
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The Theoretical Framework

Parallel di�usion from quasilinear theory (QLT):
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Summary I: The Theoretical Framework

The transport equation is well-established.

The major processes are identi�ed.

The di�usion tensor can be derived from basic theory:

{ parallel di�usion from quasilinear theory (QLT)

{ perpendicular di�usion from nonlinear theory (NLGC)

{ anisotropic di�usion from non-axisymmetric plasma
turbulence or magnetic �eld
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Jovian Electrons

and the

Di�usion Tensor
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Jovian Electrons & the Di�usion Tensor

In order to explore fully anisotropic di�usion (�k 6= �?1 6= �?2) 3-D study
of `point source' Jupiter's magnetosphere: Jovian electrons (� 7 MeV )

Heliospheric Source: Jovian Magnetosphere
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Jovian Electrons & the Di�usion Tensor

In order to explore fully anisotropic di�usion (�k 6= �?1 6= �?2) 3-D study
of `point source' Jupiter's magnetosphere: Jovian electrons (� 7 MeV )

spatial distribution: x-y-plane x-z-plane

HF et al. [2000], Ferreira et al. [2001], Lange & HF [2006]
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Jovian Electrons & the Di�usion Tensor

In order to explore fully anisotropic di�usion (�k 6= �?1 6= �?2) 3-D study
of `point source' Jupiter's magnetosphere: Jovian electrons (�7 MeV)

spacecraft trajectory 
ux variation at spacecraft

Balogh et al. [2008]

HF et al. [2000], Ferreira et al. [2001], Lange & HF [2006]: measurements X

=) �?1 = 0:02 (p=p0)
2�k ; �?2 = 0:015 f (#)�k
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The Di�usion Tensor & An Overlooked Rotation?

Study of large-scale transport requires transformation of the di�usion
tensor from a (�eld-aligned) local to a global system:

Which local system is the most 'natural' one?

One principal direction aligned with magnetic �eld.

The correct choice of the `perpendicular' directions is important
for the case of anisotropic perpendicular di�usion (e.g. for Jovian
electrons).

The most natural directions are de�ned with the Frenet-Serret
trihedron, i.e. by the curvature and torsion of a magnetic �eld:

t = B=B ; n = (t � r) t=k ; b = t� n

This has not been considered for (heliospheric) CR transport, so far...
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The Di�usion Tensor & An Overlooked Rotation?

The general transformation reads:
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The Di�usion Tensor & An Overlooked Rotation?

Example: Parker Field

`Classical' Choice: �?2 always along e� 0
@�?r 0 0

0 �?� 0
0 0 �k

1
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transformation
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The Di�usion Tensor & An Overlooked Rotation?

Example: Parker Field

`Natural' Choice: �?2 along b = t� n 0
@�?1 0 0

0 �?2 0
0 0 �k
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transformation
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The Di�usion Tensor & An Overlooked Rotation?

(E�enberger et al. 2011)
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(Preliminary) Application to Modulated Spectra

Burger & Hitge [2008] new tensor
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Summary II: The Di�usion Tensor

In case of anisotropic perpendicular di�usion a re-derivation of
the tensor in the global frame results in modi�ed tensor
elements that should be considered for the simulation of
spacecraft data.

While this might not play a role on large galactic scales, it may
well be of signi�cance for the determination of local
interstellar spectra.

�! j
For a talk on anisotropic di�usion and galactic
propagation, see Frederic E�enberger @11:20
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Astrospheric Contributions

to the Interstellar

Spectrum of Cosmic Rays
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Anomalous Cosmic Rays - Still a Riddle

Before the V1/V2 shock crossings ACRs
were thought to be di�usively accelerated
at the solar wind termination shock...
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Fermi-II Acceleration in the Helio/-Astrosheaths

Voyagers see an increase of
the ACR intensity on their way
deeper into the heliosheath:

Idea: e�ective momentum
di�usion

Ferreira et al. [2007]
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Fermi-II Acceleration in the Helio/-Astrosheaths

data �t extrapolated heliopause spectrum

Ferreira et al. [2007] Scherer et al. [2008]
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Fermi-II Acceleration in the Helio/-Astrosheaths
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Cosmic Rays from Astrospheres of Solar-like Stars

Scherer et al. [2008]
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Cosmic Rays from Astrospheres of Solar-like Stars

Scherer et al. [2008]
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Cosmic Rays from Astrospheres of Solar-like Stars

acceleration of 'Anomalous' Cosmic Rays can be signi�cant
and depends on the interstellar environment of the Sun/a star

Scherer et al. [2008]
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Cosmic Rays from Astrospheres of Solar-like Stars

Given that...

...there are about 1011 F, G, and K stars, representing
about 1/4 of all stars in the Galaxy...

...the energization of ACRs can easily be more than twenty
times as e�cient as in the present day heliosphere...

...the resulting total energy density below 300 MeV is at
least in the range 0:3� 7:6 � 10�2eV/cm2...

...up to 50% of the energy density of the interstellar cosmic ray spectrum
below 300 MeV could be provided by ('solar-type') low-mass stars.



Outline `State-of-the-Art' Di�usion Tensor Astrospheric CRs LIS R�esum�e

Summary III: Astrospheric Cosmic Rays

An ACR source region deeper in the helio-/astrosheath
results in a contribution to the interstellar CR spectrum.

) Adding up the contributions of all solar-like stars results in a
contribution to the interstellar spectrum below 300 MeV (with
re-acceleration also at higher energies?).

ACRs appear not to be shock-accelerated (at least in the
regions probed by the Voyager spacecraft, e.g. Stone et al.
[2008]).

) Does this signify di�culties for the standard di�usive shock
acceleration?
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Cosmic Ray Modulation

beyond the Heliopause
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A Moving Horizon

Stone et al. [2008], McComas et al. [2009]

Voyager 1 & 2 in the heliosheath,
approaching the heliopause:

) better constraints on (local)
interstellar spectra of cosmic rays

Interstellar Boundary Explorer
(IBEX): all-sky energetic
neutral atom (ENA) 
uxes

) knowledge about the
interstellar magnetic �eld out
to � 400AU?
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Modulation beyond the Heliopause?

(just appeared in the July 10 issue of ApJ)

Re-visiting considerations by Jokipii [2001]...
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Modulation beyond the Heliopause?

On the scale of the heliosphere (i.e., several
hundred AU) the cosmic ray di�usion
cannot be expected to be isotropic
because of the ordered local interstellar
magnetic �eld.

This magnetic �eld is not homogeneous but
wrapped around and piling up in front of the
`obstacle' heliosphere resulting in an
e�ective increase in the local �eld
strength & turbulence (Chalov et al. [2010]).

If a bow shock exists, it should further enhance the
turbulence in the outer heliosheath (OHS).

The lower di�usion coe�cients in the heliosphere imply an
increased con�nement time in the heliosphere, during which
the cosmic ray particles are e�ciently cooled.
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Modulation beyond the Heliopause?

Solving the cosmic ray transport equation results in:
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A Hierarchy of Spectra

So, one should distinguish between...

� a `true' local interstellar spectrum �!

� a 'heliopause' spectrum �!

) V1 & V2 will probably
not be able to observe the
LIS below 1 GeV

) 
attening of spectrum not
necessarily a consequence of
break in the di�usion coe�cient
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) V1 & V2 will probably
not be able to observe the
LIS below 1 GeV

) 
attening of spectrum not
necessarily a consequence of
break in the di�usion coe�cient
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Contraints on Interstellar Di�usion & Turbulence

Flattening of cosmic ray spectra

originally explained
phenomenologically with break in
the di�usion coe�cient �k
around 3-4 GV
(Moskalenko et al. [2002],

Ptuskin et al. [2006])

recently derived from a model of
interstellar turbulence (solid line)
(Shalchi & B�usching [2010])

If modulation beyond the heliopause is con�rmed, it will provide
additional contraints on interstellar turbulence.
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Summary IV: Modulation of Interstellar CR Spectra

Given the physical nature of the interstellar medium surrounding
the heliosphere, one must expect the interstellar spectra to
be modulated beyond the heliopause (downstream of the bow
shock if it exists).

One must distinguish between a heliopause spectrum and the
`true' interstellar spectrum.

It is unlikely that the Voyager spacecraft will observe the `true'
interstellar spectrum.

A quantitative understanding of this additional modulation
provides constraints on the interstellar spectra and the
interstellar turbulence.
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R�esum�e

Di�usion tensor for anisotropic perpendicular di�usion needs to
be tested.

Solar-type stars might feed the galactic cosmic ray population
below 300 MeV.

Con�rmation of modulation of interstellar spectra beyond the
heliopause will provide new contraints on both interstellar spectra
and interstellar turbulence.

The always existing conceptual link between heliospheric
and interstellar transport of cosmic rays is signi�cantly
growing because �rst measurements (Voyagers, IBEX) of
the region close to the heliopause and beyond are providing
constraints on the physical link of the two media.
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An Adiabatic Cooling E�ect

Sample particle 'trajectories' (from SDEs):

Particles spend long time in the region enclosed by the termination
shock and experience adiabatic cooling.
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