

Fermi-LAT detection of γ -ray emission in the vicinity of Westerlund 2 and W43

Elizabeth Ferrara Marie-Helene Grondin <u>Marianne Lemoine-Goumard*</u> Pierrick Martin Matthieu Renaud

on behalf of the Fermi-LAT Collaboration

CRISM (Montpellier, 27 June 2011)

* Supported by an ERC-Stg-Grant

2 years of extensive GeV observations

1888 sources detected using 2 years of data !

Fermi-LAT 24-month counts map E > 1 GeV

	Charles and Charle	1122	1. 1.		10			
1.5	2.5	4.5	8.4	16.3	32.0	63.3	126.4	251.1

2 years of extensive GeV observations

1888 sources detected using 2 years of data !

D. Thompson, Fermi Symposium 2011, Roma

What are the GeV sources detected by the LAT?

Very Preliminary - Work Still In Progress

Туре	Number	Percentage of total
Active Galactic Nuclei	832	44%
Candidate Active Galactic Nuclei	268	14%
Unassociated	594	32%
Pulsars (pulsed emission)	86	5%
Pulsars (no pulsations yet)	26	1%
Supernova Remnants/Pulsar Wind Nebulae	60	3%
Globular Clusters	11	< 1%
Other Galaxies	7	< 1%
Binary systems	4	< 1%
TOTAL	1888	100%

D. Thompson, Fermi Symposium 2011, Roma

A brief introduction to Westerlund 2

RCW 49 is a giant HII region located towards the outer edge of the Carina arm (distance: 2-8 kpc)

Chandra observations uncovered about 500 X-ray sources in the region (Townsley et al. 2004)

Large number of massive Wolf-Rayet stars found in RCW 49, among them WR 20a and WR 20b (Van der Hucht 2001, Shara et al. 1991)

WR20a: most massive binary system known in our Galaxy Westerlund 2

WR 20b WR 20a Infrared image of the RCW 49 HII region

 Star Formation in RCW49
 Spitzer Space Telescope
 IRAC

 NASA / JPL-Caltech / E. Churchwell (Univ. of Wisconsin)
 ssc2004-08a

A TeV source in the vicinity of Westerlund 2

- An extended TeV source, HESS J1023-575, was detected <u>(Aharonian, F., et al.</u> <u>2007, A&A, 467, 1075)</u> in the region of Westerlund 2
- Several scenarii to explain this VHE emission :
 - massive WR binary system WR 20a
 - young stellar cluster Westerlund 2
 - DSA in the wind blown bubble
- HESS emission slightly offset from WR 20a and WR 20b
 → disfavors the binary system hypothesis

Gamma-ray Space Telescope

Cosmic-rays accelerated in expanding stellar winds or supernova blast waves interacting with the boundaries of the blister/Interstellar radiation field are the only feasible scenarii

843 MHz image of the region of Westerlund 2

The answer is blowing in the wind

Yousaf M. Butt Nature, Vol 446, Issue 7139

A source of astoundingly energetic γ -rays associated with a star cluster might provide a clue to a century-old question: where do the cosmic rays that constantly bombard Earth come from?

Gamma-ray Space Telescope

Fermi-LAT blind search detection of a new Pulsar !

- Fermi Discovery of the pulsar PSR J1023-5746 (spin-down power of ~10³⁷ erg/s) in blind frequency searches <u>(Saz Parkinson et al., 2010, ApJ, 725, 571)</u>
- Analysis of Chandra data (0.1 10 keV) revealed a faint source, CXOU J102302.8-574606, ~8' away from Westerlund 2 and coincident with the gamma-ray pulsar

- Analysis of the off-pulse windows of PSR J1023-5746 :

 → detection of a significant emission above 10 GeV (morphological studies are still waiting more statistics)
- 1. The LAT off-pulse emission is :
 - spatially coincident with the energetic pulsar PSR J1023-5746
 - spatially coincident with the source HESS J1023-575
 - characterized by a hard spectrum which links up with the HESS spectral points
- 2. The pulsar PSR J1023-5746 is young and energetic => only 0.4% efficiency needed to power the GeV-TeV PWN candidate
- 3. The HESS source is extended => disfavours emission close to the WR 20a and WR 20b

→ These elements point towards an identification of the off-pulse emission seen by the LAT and the HESS source as the PWN associated to the young pulsar PSR J1023-5746 _______BUT....

A puzzling PWN candidate

X-ray Data (Fujita et al., 2009): • Limits for X-ray diffuse emission => Φ_{NT} < 2.6x10⁻¹² erg cm⁻² s⁻¹

Modeling of the MWL data:

B fixed at 5 μ G (unconstrained due to X-ray Upper Limit) Electron power-law index of 2.44 +/- 0.06 and energy cut-off at 60 +/- 45 TeV Initial spin period of 63 +/- 17 ms

Independent of the origin of the γ -rays, the lack of X-rays is perplexing given its extremely high spin-down luminosity

=> This implies that the population of TeV emitting particles has already cooled and does not shine significantly in X-ray synchrotrons as is the case of most middle aged TeV nebulae

A brief introduction to W43

W43 aka G30.8-0.2

Massive star-forming region in the Scutum-Crux spiral arm tangent

Distance : 6 - 7 kpc

This region hosts :

- a giant H II region
- ~10⁶ M_{sun} of molecular gas
- WR 121a (WN-type star, i.e. nitrogen dominant WR star)

330 MHz radio image of W43 (VLA, Subrahmanyan & Goss, 1996, MNRAS, 281, 239)

VHE γ-rays : HESS J1848-018

Detected during the HESS Galactic Plane survey:

- Significance : 5 σ (post-trials, ~50 h live-time)
- Significantly extended (rms of 0.32 ° ± 0.20° for a Gaussian)
- Soft spectrum (spectral index of 2.8 ± 0.2) and flux of 2% Crab
- Search for multi-wavelength counterparts (from radio to X-ray)
 - → in the direction of (but slightly offset from) W 43, which hosts the giant HII region G30.8-0.2 and the Wolf-Rayet star WR 121a in the main stellar cluster

¹³CO emission at a distance of 6-7 kpc

(Chaves, Renaud, Lemoine-Goumard & Goret, 2008, AIPC, 1085, 372)

Fermi-LAT observations above 2 GeV

Source located in the galactic plane (W43 : b = -0.11°) Pointlike analysis using 31 months of data:

→ Significant emission located within the HESS contours and slightly offset from WR 121a detected above 1-2 GeV

Counts map (left) and TS map (right) of the region of W43 above 2 GeV

Fermi-LAT observations above 2 GeV

Source located in the galactic plane (W43 : $b = -0.11^{\circ}$)

Pointlike analysis using 31 months of data:

→ Significant emission located within the HESS contours and slightly offset from WR 121a detected above 1-2 GeV

TS maps of the region of W43 above 2 GeV

Fermi-LAT morphology (E > 2 GeV)

Evidence for extension at 3.7σ level (best fit with a Gaussian width of ~0.3°) ...But statistics not large enough to discriminate between 1 extended source and several point sources

Be careful: This source is noted as « c » (confused) in the Fermi-LAT catalog

Slices along galactic longitude and latitude, centered on the source; width of integration = 1°

Spectrum

Gaussian distribution :

Spectrum : fitted with a Log Parabola Flux = $(1.77 \pm 0.26)e-7 \text{ cm}^{-2} \text{ s}^{-1}$ above 100 MeV Alpha = 2.07 ± 0.07 Beta = 0.22 ± 0.05 E_b = 1000 MeV

Fermi spectrum is obviously not connected to HESS result!

 → Contamination by 1 pulsar detected in the Fermi energy range and powering a PWN seen by HESS ?
 (hypothesis supported by the Westerlund 2/PSR J1023-5746 case)

No pulsar with spin-down power higher than 10³⁵ erg/s located in the vicinity of the GeV/TeV source => needs a radio-quiet one as for Westerlund 2

When the pulsar is off by only 1 arcmin it is hardly detectable by blind searches => With an extended source of 0.3° this is very tricky !

Conclusions

- Fermi-LAT significant detection of a source coincident with the massive stellar cluster Westerlund 2 ...but Fermi-LAT detection of a Pulsar using blind searches => this source might be a PWN
- Fermi-LAT detection of an extended source coincident with W43...but the spectrum looks like the one of a Pulsar and does not connect with HESS!this source might be contaminated by pulsed emission
- Stellar clusters and massive star formation regions might be gamma-ray sources...but this identification requires a discrimination with the Pulsar/PWN (GeV/TeV) scenario

Our Galaxy contains hundred gamma-ray Pulsars and PWNe !

Already 88 pulsars reported at Fermi Symposium 2011 and more to come ! Pulsars and PWNe are the dominant sources at GeV and TeV respectively

