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Significance of diffuse gamma-rays

With gamma rays we can probe a large part of the Galaxy:
 
• large scale diffusion properties

• ISM gas(ses) distribution(s)

• large scale averaged known sources distribution

• new sources (Dark Matter)

• at high latitudes we can also check on the local 
assumptions for propagation

• combine with CR measurements 

• new CR data and better gamma-ray statistics and 
systematics are under way

Ilias Cholis  30/6  CRISM 2011 

Thursday, June 30, 2011



Methodology
Using DRAGON to solve:
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For diffusion in physical space:

new part
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Fit to the CR data
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Gamma Ray data
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rd = 20 kpc

zd = 4 kpc

and δ = 0.5

Good fit to the data 
Need ~ 104

MSPs
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Constraining the Diffusion Properties
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Varying delta:

Including antiprotons data Kraichnan 
model is slightly preferred to a Kolmogorov

For every case we refit the Diffusion, re-acceleration and injection properties

Differences appear mainly in the electron’s signal
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: varying the radial 
profile of diffusion

differences are too small

Varying the z profile of the 
diffusion (diffusion zone hight):

Line of sight effects for ICS

Thinner diffusion zones are less 
preferable (implications for DM models 
(e.g. Hooper and Zurek 2009))
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The case of convection
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Adding a “strong” convection wind: dvC/dz = 50 km/s/kpc

Strong convection in the entire galactic disk is disfavored from
the lower latitudes (and to a smaller extend from antiprotons)
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The CR proton and He rigidity break.
Break at the injection or the diffusion?
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Figure 1: Proton and helium absolute fluxes measured by PAMELA above 1 GeV/n, compared
with a few of the previous measurements (14–22). All previous measurements but one (17)
come from balloon-borne experiments. Previous data up to few hundred GeV/n were collected
by magnetic spectrometer experiments (14–17,19) while higher energy data come from calori-
metric measurements. PAMELA data cover the energy range 1 GeV -1.2 TeV (1-600 GeV/n
for He). The fluxes are expressed in terms of kinetic energy per nucleon, converted from the
rigidity measured in the tracker and neglecting any contribution from less abundant deuterium
(d/p ! 1%) and 3He (3He/4He ! 10%). Pure proton and 4He samples are therefore assumed.
Error bars are statistical, the shaded area represents the estimated systematic uncertainty.

modulation) and 1.2 TV, the resulting spectral indices are:

γR
30−1000 GV,p = 2.820± 0.003(stat)± 0.005(syst),

γR
30−1000 GV,He = 2.732± 0.005(stat)+0.008

−0.003(syst),

5

Science.1199172 (arXiv:1103.4055)

What could be the origin of the 
rigidity break?

DRAGON is good for the steady 
state approximation (not for some 
local recent events)
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Break in the injection: suggested by studies of SNRs gamma-ray
(Picozza 07) and from semi-analytical work (presence of a precursor) 
(work by: Caprioli, Amato, Blasi, Volk, Malkov).
Also we could simply be observing the emergence of a second
population of sources with slightly harder inj. spectrum. (case A) 

Break in the diffusion (a smooth hardening has already been suggested
by Donato and Serpico 2010). 
For a break we could be observing a transition from Kraichnan to
Kolmogorov. (case B)

The difference is too small in gamma-rays
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C.Evoli, I.C., D. Grasso, L. Maccione, P. Ullio (in prep.)

CR antiprotons:
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A
 second break for the diffusion case

AMS 02 could possibly indicate a second 
rigidity break at ~230 GV?
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Varying the ISM Gas 
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Uncertainties in H2 and HI large scale distribution are important, 
(HII contributes to O(0.1) to the total “pi0”)

See also the complementary work from T.Delahaye, A. Fiasson,
 M. Pohl & P. Salati (1102.0744) on the uncertainties on the 
hadronic part of gammas.
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Specific assumptions in the literature
such as Bronfmann & Cohen are in 
tension with the data

We can pin down preferred models 
for the gas. Uncertainties to H2 are
the most affected (since they are the 
largest).
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Protons (unlike electrons) can be predicted from their local CR 
spectrum, and after refitting the diffusion properties for certain gas 
and source distribution assumptions, their profiles are practically 
the same, thus with gamma-rays (after fitting the CRs) we probe 
the targets (gas).
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Sources large scale averaged distribution
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Sources distribution are sensitive to selection effects in the inner
part of the Galaxy. This can effect the gamma-rays prediction.

We need lower latitudes studies which probe more directly the sources.
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pp-collision:

Ilias Cholis  30/6  CRISM 2011 

Our analysis is robust with
 respect to gamma-ray production
spectrum parametrization from 
pp-collisions.

All these information can be used as a basis for 
searches on DM at gamma-rays.
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The Fermi haze/bubbles
are seen even from the gamma-ray data

the Fermi haze/bubbles
e.g., Dobler et al. (2010); Su, Finkbeiner, & Slatyer (2010); Dobler, Cholis, & Weiner (2011)

gamma-ray 
data 

G.Dobler
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The two haze signals
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Thank you.
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Additional slides
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Fermi (gamma-ray) haze
Since 2004 Finkbeiner has proposed the WMAP (microwave) haze, which suggests
the existence of a population of electrons with a spectrum harder than the SNe 
accelerated electrons, of roughly spherical shape and extending out to at lest 2kpc 
(~10 kpc considering Fermi data). 

Such a population of hard electrons should also give an ICS signal as well. The 
Fermi haze is the gamma-ray counterpart of the microwave haze.

As in the case of the WMAP haze, all-sky templates were used to model the back-
ground components.

Background    s: decaying     s produced at inelastic pp collisions, ICS and 
bremsstrahlung from the softer (SNe) electrons, point sources, isotropic    s.  

γ π0

γ

3 different template sets were used, that all resulted in the need for an extra    -ray
template (the haze template) in order to fit well the entire   -ray sky.  The haze 
template was in all cases non-disky and suggested a hard population of electrons, 
similarly to the microwave haze. 

γ
γ
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The Fermi haze template
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Su, Slatyer and Finkbeiner  work

ApJ 724, 1044 (2010) (arXiv:1005.5480) 
Fermi bubble interior template
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One needs to be very careful for small (but significant in the inter-
pretation) caveats with using templates.
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Yusef-Zadeh & Morris (1987), Morris & Yusef-Zadeh (1989), Morris 
(2007), have suggested mag. fields up to few mG in large non-thermal 
radio filaments (with widths of pc and lengths ~ 50pc). Beck (2008) 
suggested 0.5 mG. Those non-thermal filaments seen by VLA are 
directed perpendicular to the disk plane, and are probes of the general 
B-field properties, suggesting a predominantly bipolar field extending 
~200pc in r (Nord et. al. (2004)).
Also arguments of CR cooling by synchrotron radiation in the inner 
500pc have been used to avoid over-production of gamma-rays by ICS.
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