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CR escape time

CR total energy

p+ p → p+ p+ π0
ISM

CR

π0 → γ + γ

-> power of CR sources 3 x 1040 erg/s

~ Baade & Zwicky, 1934

-> power of SuperNovae 3 x 1041 erg/s

few supernovae per 
century in the Galaxy

Supernovae (or anything connected to them) 
might be the sources of cosmic rays:

most popular scenario -> supernova remnants
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(2) Strong shocks at SNRs can indeed accelerate 

E-2 spectra.
-> Thus SNRs are good candidates as sources of 

Galactic CRs.
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Diffusive Shock Acceleration at 
SuperNova Remnants and the origin of 

Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest 
that CR sources have to inject in the Galaxy a 

spectrum close to E-2. 
(2) Strong shocks at SNRs can indeed accelerate 

E-2 spectra.
-> Thus SNRs are good candidates as sources of 

Galactic CRs.✘
E-2 is the spectrum at the shock, not the one released in the ISM!
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When do CRs escape SNRs?

ush

Rsh

THIS IS A SNR

We need to know a bit of shock acceleration theory...

Diffusion length:

Confinement condition:

ldiff ∼
D(E)
ush

∝ E

Bshush

D(E)
ush(t)

< Rsh(t) → Emax ∼ Bsh ush(t) Rsh(t)

Sedov phase:

Rsh(t) ∝ t2/5

ush(t) ∝ t−3/5

Emax ∝ Bsht−1/5

Emax decreases with time
Particles with E > Emax escape the SNR

Bsh also 
depends on 

time
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(Non resonant) current driven instability

Bell 2004

CR current

down-shock-up

return current (carried by the 
thermal plasma)

B-field line (frozen into the 
thermal plasma)

interaction between return current and 
B-field sets the background plasma in 

motion and drives the instability

�j × �B

�j × �B

CRs stream at the shock velocity relative to the background plasma

 j x B force expands the spiral

 lengthens B-field lines

 increases B-field

 increase j x B force!

instability!



Amplified B-field and particle escape...

Bell 2004saturation field:
B2

sat

8π
≈ 1

2

ush

c
Ucr ∝ � u3

sh

Emax ∝ B Rsh ush ∝ t−11/10

brutal (and naive) estimate...

Guess:
at the beginning (end) of the Sedov phase [100 - 105 yrs] CRs with the energy 

of the knee (proton mass) are released in the ISM

Emax ∝ t−2.16

adopted for phenomenological studies by Gabici& Aharonian 2007, Gabici et al 2009 
and by Fujita et al 2010, Li & Chen 2010, Ohira et al 2010, 2011
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Emax ∝ t−0.8

Emax ∝ t−3.5

growth rate:
streaming instability

damping is 
important at late 

times!
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Many papers on Emax versus t - (2)
Ellison & Bykov 2011

Gabici 
et al 2009

“Non linear feedback may reduce the full effects 
of magnetic field amplification and we feel it is 

unlikely that a time dependence as strong as 
assumed by Gabici et al will be obtained.”

no B-field 
amplification Emax ∝ Bsht−1/5
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Many papers on Emax versus t - (3)
Caprioli et al 2009, 2010

escaping CRs
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high CR acceleration efficiency

low CR acceleration efficiency

during Sedov

end of Sedov

Many papers on Emax versus t - (3)
Caprioli et al 2009, 2010

escaping CRs
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CR spectrum released in the ISM
very naive summary of: Ptuskin & Zirakashvili 2003, 2005

SNR in Sedov phase: Rs ∝ t
2
5 us ∝ t−

3
5

Shock kinetic luminosity: Lk ∝ � u3
s (4πR2

s) ∝ t−1

Assumption 1: particles of energy E are released at a time defined by -> E ∝ t−δ

Assumption 2: a fixed fraction of Lk is released in form of CRs

dNCR

dE
=

dNCR

dt

dt

dE
∝ Lk

E
× t

E

�
E

t

dt

dE

�
∝ E−2

1/t const

again!
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A bit more general solution...
very naive summary of: Ohira et al 2010

ηcra fraction of the shock kin. energy -> CRs with spectrum:Lk

if only recent acceleration relevant -> Qesc ∝ QCR δ(E − Emax(t))

QCR ∝ E−s

ηcr Lk ≈ Qcr(Emax)E
2
max ∝ Qesc(Emax)E

2
max

(a) Hard spectrum -> s < 2

escaping energy flux

Nesc ∝ E−2

ηcr Lk ≈ Qcr(E0)E
2
0 ∝ Qesc(Emax)E

2
max

�
E0

Emax

�2−s

(b) Soft spectrum -> s > 2

Nesc ∝ E−s

CAVEATS.... 

 CR acceleration efficiency is likely to change with time

 Alfven drift may change (steepen) the  spectrum of 

accelerated particles (Zirakashvili & Ptuskin 2008)

 the scaling Emax versus time may well be different than a 

single power law



Conclusions on escape

 qualitative agreement on one fact: higher energy CRs are released 

first, lower energy ones later...

 relation Emax versus time still quite unknown...

 most of the approaches do not include the non resonant (Bell) instability

 the spectrum released in the ISM may fit with the standard SNR/CR 

scenario (i.e. a spectrum a bit steeper than E-2) 

 for electrons see Ohira et al 2011



(2)  Propagation



Isotropic diffusion
Main motivation:it’s simple...

Aharonian&Atoyan 1996;Gabici et al 2007,2009,2010;Torres et al 2008,2010;Rodriguez Marrero et al 2008;Lee 
et al 2008;Fujita et al 2009;Casanova et al 2010;Li&Chen 2010;Ohira et al 2011;Ellison&Bikov 2011 ...
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Isotropic diffusion
Main motivation:it’s simple...

Aharonian&Atoyan 1996;Gabici et al 2007,2009,2010;Torres et al 2008,2010;Rodriguez Marrero et al 2008;Lee 
et al 2008;Fujita et al 2009;Casanova et al 2010;Li&Chen 2010;Ohira et al 2011;Ellison&Bikov 2011 ...

const ∝ ηCR ESN

l3d

∝ e
−
�

R
ld

�2

tage -> ld = 10, 30, 100 pc

ld ≈ (D t)1/2
diffusion length
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More realistic scenario...

Jokipii & Parker 1969

CRs propagate mainly 
along field lines...

CRs

The transport perpendicular to the 
magnetic field direction mainly due to 
the wandering of the magnetic field 

lines (cross-field diffusion can be often 
neglected [see Elena’s talk])

CRs

Magnetic field line wandering 
induced by fluid motions
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CR particle B0
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CR streaming velocity

Alfven waves

resonant interaction 
between CRs and 

Alfven waves

momentum -> waves

↝↝↝
↝ ↝
↝
↝

more waves

waves are stronger

e.g. Wentzel 1972, 1974
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Non linear CR diffusion along B
Ptuskin, Zirakashvili, & Plesser 2007

∂f

∂t
−∇D∇f = 0

D =
4 c RL

3 π U(kr)

Γg = Γd

along the 
field lines

energy density of Alfven waves per 
unit log bandwidth which are resonant 

with CRs with momentum p

more waves -> less diffusion

growth rate 
(streaming instability)

damping rate 
(Kolmogorov)

x∗ ≈ 150

�
WCR

1050erg

�−1 � p

GeV

�0.4
�

t∗
Myr

�3/2

pc

?

Very small diffusion!
-> more damping? (ion neutral)

-> B-field line wandering?



Conclusions on propagation

 in my view the aspect that still needs more work 

 difficult because non-linear + B-field wandering (this needs to be 

considered in calculations...)

 probably the isotropic diffusion (though an obvious step-zero for 

calculations) is not appropriate to describe diffusion close to CR sources 

(might be OK in the Galaxy...)



(3) Radiation*

* see Sabrina’s talk
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How to use Molecular Clouds...

SNRs accelerate CRs

CRs “somehow” 
escape the SNR

γ

γ

MCs enhance the 
gamma ray emission

Rd =
√
4 D t

We can try to: 

 constrain diffusion

 identify the sources of CRs

Aharonian&Atoyan, 1996; SG&Aharonian, 2007

this is you
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Conclusions on radiation

 detection of gamma rays from the surroundings of SNRs (or any CR 

source) may serve as probes to identify CR sources and constrain the 

diffusion coefficient

 isotropic diffusion probably not the best: anisotropic effects + self 

generation of waves

 more details in Sabrina’s talk!


