#### A gamma-ray view of Eta Carinae colliding wind binary system

#### Christian Farnier ISDC, Geneva

Cosmic rays & their interstellar medium environment Montpellier - 2011

ISDC

#### Outline

- Eta Carinae system
- High-energy emission status
- $\gamma$ -ray spectral analysis
- Variability at high energy ?
- Spectral energy distribution
- Energetics
- Conclusion

#### Eta Carinae CWB system

#### System :

- Distance : 2.3 kpc
- Binary system
- Eccentricity e : ~0.9
- Semi-major axis : a=16.16 a.u.
- Distance @ periastron : 1.66 a.u.
- Period : 5.54 years
- Last periastron : 11<sup>th</sup> January 2009
- ISM + nebula column density :  $\sim 10^{22}$  cm<sup>-2</sup>



#### Primary star :

- Luminous blue variable (LBV)
- M ~ 80 120 M<sub>sun</sub>
- $M_{dot} \sim 10^{-4} 10^{-3} M_{sun} \text{ yr}^{-1}$
- Wind velocity :  $v_{inf} \sim 500$  km/s
- Radius : R ~ 100 R<sub>sun</sub>

#### Secondary star (unseen):

- O or WR
- M ~ 30 M<sub>sup</sub>

• 
$$M_{dot} \sim 10^{-5} M_{sun} \text{ yr}^{-1}$$

• Wind velocity :  $v_{inf} \sim 3000$  km/s

• Radius : R 
$$\sim$$
 20 R<sub>su</sub>

Highest star mass loss rate observed.

Still lot of controversial fact : star type,  $M_{dot}$ , orientation, positions of stars during periastron, ...

**Christian Farnier** 

CRISM - Montpellier 2011

#### Non-thermal emission status

- Eta Carinae location
- INTEGRAL / Suzaku compatible with eta Car. Leyder et al. (2008, 2010), Sekiguchi (2009)
- AGILE steady source and flaring episode spatially coincident with eta Car. Tavani et al. (2009)
- Fermi/LAT detection is quite clear :
  - TS > 2800 ~ 53σ (above 200MeV)
  - 1FGLJ1045.2-5942 slightly offset eta Car, oustide 95% containment radius
  - New analysis with 21 months of data, Fermi/LAT source position slightly improved and consistent with eta Car:  $(1.02 \pm 1.18)$ ' away



Christian Farnier

CRISM – Montpellier 2011

# Spectral analysis in GeV domain

Analysis of Fermi/LAT data

- 2-components spectrum
  - Soft γ-ray component : Exponentially cut off PL :
    - TS ~ 2281 (47σ)
    - $-\Gamma = 1.69 \pm 0.12$
    - $E_{c} = 1.8 \pm 0.5 \text{ GeV}$
    - $F_{0.2-100} \sim 1.5 \times 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}$
  - *Hard* γ-ray component : PL
    - TS ~ 73 (8.5σ)
    - $-\Gamma = 1.85 \pm 0.25$
    - $F_{0.2-100} \sim 0.4 \times 10^{-7} \text{cm}^{-2} \text{s}^{-1}$
- Overall flux :

```
F_{_{0.2\cdot100}}~(1.93 ± 0.03)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup>
```



Farnier et al. 2011, A&A, 526, 57

Both components are spatially consistent with eta Car.

## Temporal variability status

 <u>Soft X-rays (2 – 10 keV) :</u> Large variability of the thermal X-ray emission near and during apastron. Thermal X-ray emission = free-free emission, variability due to post shock gas density rising at periastron



<u>Hard X-rays</u> :

Intensity measured by INTEGRAL **far from** periastron :  $0.18 \pm 0.02$  cnt/s Intensity measured by INTEGRAL **close to** periastron :  $0.16 \pm 0.05$  cnt/s  $\Rightarrow$  No significant variation of the hard X-ray component.

- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays :</u> No indication of significant variability along the orbit in Fermi/LAT data.
- <u>High energy gamma-rays :</u> Emissivity of the system decrease after periastron passage.



- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays :</u> No indication of significant variability along the orbit in Fermi/LAT data.
- <u>High energy gamma-rays :</u> Emissivity of the system decrease after periastron passage.



- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays :</u> No indication of significant variability along the orbit in Fermi/LAT data.
- <u>High energy gamma-rays :</u> Emissivity of the system decrease after periastron passage.



- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays :</u> No indication of significant variability along the orbit in Fermi/LAT data.
- <u>High energy gamma-rays :</u> Emissivity of the system decrease after periastron passage.



- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays :</u> No indication of significant variability along the orbit in Fermi/LAT data.
- <u>High energy gamma-rays :</u> Emissivity of the system decrease after periastron passage.



- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays :</u> No indication of significant variability along the orbit in Fermi/LAT data.
- <u>High energy gamma-rays :</u> Emissivity of the system decrease after periastron passage.



## Variability discussion

- The temporal variability strengthens the hypothesis of gamma emission related to eta Carinae system : FIRST COLLIDING WINDS BINARY SYSTEM OBSERVED IN GAMMA-RAYS !
- The lack of variability both in hard X-rays and soft gamma-rays may suggest a common origin which differs from the hard gamma-ray one.
- The soft X-ray component is likely due to free-free emission. In this case, the luminosity variation observed in the thermal component suggests a rise of the post shock gas density near periastron.
- In case of hadronic origin of the hard gamma-ray tail, protons might be efficiently accelerated in the colliding winds region all along the orbit but only efficiently cooled down at periastron, when the opacity is large enough.

# Spectral energy distribution



- e<sup>-</sup> IC with intense UV radiation field + π<sup>0</sup> decay pp interaction of the stellar winds
  - Simple model explaining both hard X-ray and GeV fluxes
  - maximal proton energy not constrained by Fermi/LAT

pro : hard tails con : no variability detected

• Alternative explanation for the 2 components  $\gamma$ -ray shape :  $\gamma\gamma$  absorption

pro (?): acceleration of a single population con : absorption not really expected for the 3-10 GeV range

 IC scattering on IR photons in external shock between Homonculus and ISM

pro : no variability expected for  $\gamma$ -ray con : hard  $\gamma$ -ray tail not explained

#### Energetics

- Wind momentum ratio :  $\eta = (M_{dot, 2} V_{inf, 2})/(M_{dot, 1} V_{inf, 1}) \sim 0.2$
- Fraction of wind involved in wind-wind col.  $\sim 10\%$
- . Mechanical energy available  $\sim$  200  $\rm L_{_{Sun}}$
- Total interacting proton energy  $\rm E_{_{\rm D}} \sim 10^{40}~erg$
- <=> energy injected to sustain shock :  $E_p/t_{pp} \sim 10L_{sun}$ <=> 5% of shocked mechanical energy <=> < 1% of total wind mechanical luminosity
- Integrated over massive star lifetime, massive stars stellar winds might be at a similar order of efficiency to accelerate hadrons than SNRs
  Need VHE observations to contrain their contribution up to the knee

#### Conclusions

- Single component emission very unlikely due to 2 component spectrum + variability at high energies :
  - Inverse Compton scattering of electrons
  - $\pi^0$  decay from pp interactions
- For future periastron passage (summer 2014), H.E.S.S. should be able to detect eta Carinae or put a strong constraint on the maximum proton energy
- X-ray observations of eta Carinae led to the discovery of the binary system, gamma-rays might help to caracterize its geometry.

#### Thanks for your attention

- <u>Gamma rays</u>: AGILE reported a (rather soft) 2-days flaring episode in eta Car region on 2008 Oct. 11-13 (source reached (27 ± 7)x10<sup>-7</sup>cm<sup>-2</sup>s<sup>-1</sup> above 100MeV), not observed by Fermi/LAT.
- <u>Low energy gamma-rays</u>: No indication of significant variability along the orbit in Fermi/LAT data
- <u>High energy gamma-rays :</u> emissivity of the system decrease after periastron passage





Christian Farnier

CRISM - Montpellier 2011